论文标题

马尔可夫链条蒙特卡洛方法使用多尺度方法和机器学习技术用于地质力学沉降

Preconditioning Markov Chain Monte Carlo Method for Geomechanical Subsidence using multiscale method and machine learning technique

论文作者

Vasilyeva, Maria, Tyrylgin, Aleksei, Brown, Donald L., Mondal, Anirban

论文摘要

在本文中,我们考虑了随机特性的毛弹性问题的数值解。我们提出了两阶段的马尔可夫链蒙特卡洛法,用于地质力学沉降。在这项工作中,我们研究了两种预处理技术:(MS)模型订单降低和(ML)机器学习技术的多尺度方法。预处理的目的是快速采样,其中首先是由廉价的多尺度求解器或使用神经网络的快速预测来测试的,并且只有在提案通过第一步时才能进行完整的细网格计算。为了构建降低的订单模型,我们使用广义的多尺度有限元法,并目前在随机场中的压力和位移的多尺度基础函数的构造。为了构建基于机器学习的预处理,我们使用多尺度求解器生成数据集并使用它来训练神经网络。 Karhunen-Loeve扩展用于表示随机场的实现。为二维模型示例提供了数值结果。

In this paper, we consider the numerical solution of the poroelasticity problem with stochastic properties. We present a Two-stage Markov Chain Monte Carlo method for geomechanical subsidence. In this work, we study two techniques of preconditioning: (MS) multiscale method for model order reduction and (ML) machine learning technique. The purpose of preconditioning is the fast sampling, where a new proposal is first testes by a cheap multiscale solver or using fast prediction of the neural network and the full fine grid computations will be conducted only if the proposal passes the first step. To construct a reduced order model, we use the Generalized Multiscale Finite Element Method and present construction of the multiscale basis functions for pressure and displacements in stochastic fields. In order to construct a machine learning based preconditioning, we generate a dataset using a multiscale solver and use it to train neural networks. The Karhunen-Loeve expansion is used to represent the realization of the stochastic field. Numerical results are presented for two- and three-dimensional model examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源