论文标题

从Vlasov-Poisson-Boltzmann系统到不可压缩的Navier-Stokes-stokes-fourier-Poisson系统:经典解决方案的收敛性

From Vlasov-Poisson-Boltzmann system to incompressible Navier-Stokes-Fourier-Poisson system: convergence for classical solutions

论文作者

Guo, Mengmeng, Jiang, Ning, Luo, Yi-Long

论文摘要

对于单物种的Vlasov-Poisson-Boltzmann(VPB)系统,在缩放下,波动的矩将正式收敛于不可压缩的Navier-Stokes-stokes-stokes-fourier-poisson(NSFP)系统,我们证明了统一的估计值,涉及knudsen数字$ $ $ε$。结果,在(0,1] $中,所有$ε\ in(0,1)$的全球经典解决方案的存在是在整个空间中建立的,在较小的初始数据尺寸的情况下,与不可压缩的NSFP的融合为$ε$ go go to 0是严格的合理性的。

For the one-species Vlasov-Poisson-Boltzmann (VPB) system in the scaling under which the moments of the fluctuations formally converge to the incompressible Navier-Stokes-Fourier-Poisson (NSFP) system, we prove the uniform estimates with respect to the Knudsen number $ε$ for the fluctuations. As a consequence, the existence of the global-in-time classical solutions of VPB with all $ε\in (0,1]$ is established in whole space under small size of initial data, and the convergence to incompressible NSFP as $ε$ go to 0 is rigorously justified.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源