论文标题

在自我双重和MHV Lagrangians中探索直的无限线条

Exploring straight infinite Wilson lines in the Self Dual and the MHV Lagrangians

论文作者

Kakkad, Hiren, Kotko, Piotr, Stasto, Anna

论文摘要

我们研究了Yang Mills理论的自我双重扇区的背景下,直接无限的Wilson线的出现,以及根据Cachazo-Svrcek-Witten方法的Lagrangian实施MHV顶点(MHV Lagrangian)的联系。过去的两位作者已经认识到,这种威尔逊线的功能提供了在阳光和MHV Lagrangian的Yang-Mills理论之间的积极螺旋性场的场转换。在这里,我们详细讨论了与自我双重扇区的联系,并为减螺旋场转换提供了新的见解,可以用自dual平面上直的无限威尔逊线的功能衍生物表示。

We investigate the appearance of straight infinite Wilson lines lying on the self-dual plane in the context of the Self Dual sector of the Yang Mills theory and in a connection to the Lagrangian implementing the MHV vertices (MHV Lagrangian) according to the Cachazo-Svrcek-Witten method. It was already recognized in the past by two of the authors, that such Wilson line functional provides the field transformation of positive helicity fields between the Yang-Mills theory on the light-cone and the MHV Lagrangian. Here we discuss in detail the connection to the Self Dual sector and we provide a new insight into the solution for the minus helicity field transformation, which can be expressed in terms of a functional derivative of the straight infinite Wilson line on the self-dual plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源