论文标题
通过深层动态纹理学习从大规模多相CT数据中收集,检测和表征肝脏病变
Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale Multi-phase CT Data via Deep Dynamic Texture Learning
论文作者
论文摘要
长期以来,非侵入性基于放射学的病变表征和鉴定,例如区分癌症亚型,一直是增强肿瘤学诊断和治疗程序的主要目的。在这里,我们研究了特定的人类受试者,希望减少对肝癌患者的侵入性手术活检的需求,这可能会导致许多有害的副作用。为此,我们提出了一个全自动和多阶段的肝肿瘤表征框架,旨在动态对比计算机断层扫描(CT)。我们的系统包括四个顺序的肿瘤建议检测过程,肿瘤收获,原发性肿瘤部位选择以及基于深层纹理的肿瘤表征。我们的主要贡献是,(1)我们提出了一种用于肝病变的3D非异向锚定检测方法; (2)我们介绍并验证空间自适应的纹理(SADT)学习,从而可以更精确地表征肝病。 (3)使用半自动过程,我们通过200个黄金标准注释来启动另外1001例患者。实验评估表明,与基准相比,我们的新数据策略与SADT深层动态纹理分析相结合,可以有效地将平均F1分数提高> 8.6%,从而区分了四种主要的肝病变类型。我们的F1得分为(肝细胞癌与剩余子类别)为0.763,使用动态CT的人类观察者性能高于人类观察者的性能,并且与先进的磁共振成像协议相当。除了证明我们的数据策展方法和受医师启发的工作流程的好处外,这些结果还表明,分析纹理特征而不是基于标准的对象分析,这是病变差异的有希望的策略。
Non-invasive radiological-based lesion characterization and identification, e.g., to differentiate cancer subtypes, has long been a major aim to enhance oncological diagnosis and treatment procedures. Here we study a specific population of human subjects, with the hope of reducing the need for invasive surgical biopsies of liver cancer patients, which can cause many harmful side-effects. To this end, we propose a fully-automated and multi-stage liver tumor characterization framework designed for dynamic contrast computed tomography (CT). Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization. Our main contributions are that, (1) we propose a 3D non-isotropic anchor-free detection method for liver lesions; (2) we present and validate spatially adaptivedeep texture (SaDT) learning, which allows for more precise characterization of liver lesions; (3) using a semi-automatic process, we bootstrap off of 200 gold standard annotations to curate another 1001 patients. Experimental evaluations demonstrate that our new data curation strategy, combined with the SaDT deep dynamic texture analysis, can effectively improve the mean F1 scores by >8.6% compared with baselines, in differentiating four major liver lesion types. Our F1 score of (hepatocellular carcinoma versus remaining subclasses) is 0.763, which is higher than reported human observer performance using dynamic CT and comparable to an advanced magnetic resonance imagery protocol. Apart from demonstrating the benefits of our data curation approach and physician-inspired workflow, these results also indicate that analyzing texture features, instead of standard object-based analysis, is a promising strategy for lesion differentiation.