论文标题
二次klein-gordon方程,具有一个维度的潜力
Quadratic Klein-Gordon equations with a potential in one dimension
论文作者
论文摘要
本文提出了关于(拓扑)孤子的渐近稳定性问题的相当普遍的新观点。我们的方法是基于在非线性层面上使用扭曲的傅立叶变换。它不依赖于Strichartz或病毒估计,因此能够治疗低功率的非线性(因此也是非定位的孤子)并捕获解决方案的全局(在时空和时间上)行为。更具体地说,我们考虑具有一个空间维度潜力的二次非线性klein-gordon方程。假定潜力是规则的,腐烂的,并且是通用或例外(还有一些额外的奇偶校验假设)。假设相关的schrödinger运算符没有负特征值,我们获得了全球及时界限,包括小型解决方案的全球范围,包括尖锐的衰减和修改的渐近学。这些结果对各种问题的孤子或拓扑孤子的渐近稳定性具有影响。例如,我们获得了相对于双正弦波子问题的奇数扰动的完全渐近稳定性(在适当的变形参数范围内)。对于$ ϕ^4 $问题,当忽略了与内部模式的耦合时,我们获得了扭结的渐近稳定性(相对于奇数扰动)。我们的结果也超出了这些示例,因为我们的方法允许在二次相互作用的水平上存在完全相干的现象,从而在扭曲的傅立叶空间中产生了变性。我们设计了一个合并此过程的合适框架,并在扭曲的设置中使用多线性谐波分析来控制所有非线性相互作用。
This paper proposes a fairly general new point of view on the question of asymptotic stability of (topological) solitons. Our approach is based on the use of the distorted Fourier transform at the nonlinear level; it does not rely on Strichartz or virial estimates and is therefore able to treat low power nonlinearities (hence also non-localized solitons) and capture the global (in space and time) behavior of solutions. More specifically, we consider quadratic nonlinear Klein-Gordon equations with a potential in one space dimension. The potential is assumed to be regular, decaying, and either generic or exceptional (with some additional parity assumptions). Assuming that the associated Schrödinger operator has no negative eigenvalues, we obtain global-in-time bounds, including sharp pointwise decay and modified asymptotics, for small solutions. These results have implications for the asymptotic stability of solitons, or topological solitons, for a variety of problems. For instance, we obtain full asymptotic stability of kinks with respect to odd perturbations for the double Sine-Gordon problem (in an appropriate range of the deformation parameter). For the $ϕ^4$ problem, we obtain asymptotic stability of the kink (with respect to odd perturbations) when the coupling to the internal mode appearing in the linearization around it is neglected. Our results also go beyond these examples since our approach allows for the presence of a fully coherent phenomenon at the level of quadratic interactions, which creates a degeneracy in distorted Fourier space. We devise a suitable framework that incorporates this, and use multilinear harmonic analysis in the distorted setting to control all nonlinear interactions.