论文标题

加权匹配多项式的精制加莱 - 埃德蒙兹结构定理

A refined Gallai-Edmonds structure theorem for weighted matching polynomials

论文作者

Spier, Thomás Jung

论文摘要

在这项工作中,我们证明了Gallai-Edmonds结构的改进,用于KU和Wong的加权匹配多项式。我们的证明使用匹配的多项式和分支的持续分数之间的连接。我们还展示了这与Sylvester对经典Sturm定理的修改有关的对真实多项式在间隔中的零数的数量有关。此外,我们还获得了有关匹配多项式的零的其他结果。

In this work, we prove a refinement of the Gallai-Edmonds structure theorem for weighted matching polynomials by Ku and Wong. Our proof uses a connection between matching polynomials and branched continued fractions. We also show how this is related to a modification by Sylvester of the classical Sturm's theorem on the number of zeros of a real polynomial in an interval. In addition, we obtain some other results about zeros of matching polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源