论文标题

用于功能独立特征提取的新型模态自动编码器

A New Modal Autoencoder for Functionally Independent Feature Extraction

论文作者

Guo, Yuzhu, Pan, Kang, Li, Simeng, Han, Zongchang, Wang, Kexin, Li, Li

论文摘要

自动编码器已被广泛用于尺寸降低和特征提取。通过引入正则化项提出了各种类型的自动编码器。这些正规化中的大多数通过约束编码器部分中的权重来改善表示的学习,从而将输入映射到隐藏的节点中并影响特征的产生。在这项研究中,我们表明对解码器的限制也可以显着提高其性能,因为解码器决定了潜在变量如何促进输入的重建。受到机械工程的结构模态分析方法的启发,提出了一种新的模态自动编码器(MAE),通过将读取权重矩阵的列构成。新的正则化有助于解散变异的解释因素,并迫使MAE提取数据中的基本模式。在输入的重建中,学到的表示在功能上是独立的,并且在连续的分类任务中表现更好。结果已在MNIST变化和USPS分类基准套件上进行了验证。比较实验清楚地表明,新算法具有令人惊讶的优势。新的MAE为自动编码器介绍了非常简单的培训原则,可以有望预训练深度神经网络。

Autoencoders have been widely used for dimensional reduction and feature extraction. Various types of autoencoders have been proposed by introducing regularization terms. Most of these regularizations improve representation learning by constraining the weights in the encoder part, which maps input into hidden nodes and affects the generation of features. In this study, we show that a constraint to the decoder can also significantly improve its performance because the decoder determines how the latent variables contribute to the reconstruction of input. Inspired by the structural modal analysis method in mechanical engineering, a new modal autoencoder (MAE) is proposed by othogonalising the columns of the readout weight matrix. The new regularization helps to disentangle explanatory factors of variation and forces the MAE to extract fundamental modes in data. The learned representations are functionally independent in the reconstruction of input and perform better in consecutive classification tasks. The results were validated on the MNIST variations and USPS classification benchmark suite. Comparative experiments clearly show that the new algorithm has a surprising advantage. The new MAE introduces a very simple training principle for autoencoders and could be promising for the pre-training of deep neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源