论文标题
域适应的目标一致性:鲁棒性达到可转移性时
Target Consistency for Domain Adaptation: when Robustness meets Transferability
论文作者
论文摘要
学习不变表示已成功地用于核对源和目标域的无监督域适应性。通过研究集群假设的棱镜下的这种方法的鲁棒性,我们提出了新的证据,表明具有低源风险的不变性不能保证良好的目标分类器。更确切地说,我们表明,尽管位于源域中,但仍在目标域中违反了集群假设,这表明目标分类器缺乏鲁棒性。为了解决这个问题,我们证明了在目标域中执行群集假设的重要性,该假设名为目标一致性(TC),尤其是当与类级别不变性(CLIV)配对时。我们的新方法在基于不变表示的最新方法上,在图像分类和分割基准方面都取得了重大改进。重要的是,我们的方法灵活且易于实施,使其成为改善表示形式可传递性的现有方法的互补技术。
Learning Invariant Representations has been successfully applied for reconciling a source and a target domain for Unsupervised Domain Adaptation. By investigating the robustness of such methods under the prism of the cluster assumption, we bring new evidence that invariance with a low source risk does not guarantee a well-performing target classifier. More precisely, we show that the cluster assumption is violated in the target domain despite being maintained in the source domain, indicating a lack of robustness of the target classifier. To address this problem, we demonstrate the importance of enforcing the cluster assumption in the target domain, named Target Consistency (TC), especially when paired with Class-Level InVariance (CLIV). Our new approach results in a significant improvement, on both image classification and segmentation benchmarks, over state-of-the-art methods based on invariant representations. Importantly, our method is flexible and easy to implement, making it a complementary technique to existing approaches for improving transferability of representations.