论文标题
分析在线滥用行为数据集中的注释一致性
On Analyzing Annotation Consistency in Online Abusive Behavior Datasets
论文作者
论文摘要
在线虐待行为是一个重要的问题,它打破了在线社会社区的凝聚力,甚至引起了我们社会中的公共安全问题。在这个不断上升的问题的激励下,研究人员提出,收集和注释在线滥用内容数据集。这些数据集在促进有关在线仇恨言论和虐待行为的研究方面起着至关重要的作用。但是,此类数据集的注释是一项艰巨的任务。对于给定文本的真实标签通常是争议的,因为标签的语义差异可能会被模糊(例如虐待和仇恨),而且通常是主观的。在这项研究中,我们提出了一个分析框架,以研究在线仇恨和滥用内容数据集中的注释一致性。我们应用了建议的框架来评估三个流行数据集中注释的一致性,这些数据集广泛用于在线仇恨言论和虐待行为研究中。我们发现现有数据集中仍然存在大量的注释不一致,尤其是当标签在语义上相似时。
Online abusive behavior is an important issue that breaks the cohesiveness of online social communities and even raises public safety concerns in our societies. Motivated by this rising issue, researchers have proposed, collected, and annotated online abusive content datasets. These datasets play a critical role in facilitating the research on online hate speech and abusive behaviors. However, the annotation of such datasets is a difficult task; it is often contentious on what should be the true label of a given text as the semantic difference of the labels may be blurred (e.g., abusive and hate) and often subjective. In this study, we proposed an analytical framework to study the annotation consistency in online hate and abusive content datasets. We applied our proposed framework to evaluate the consistency of the annotation in three popular datasets that are widely used in online hate speech and abusive behavior studies. We found that there is still a substantial amount of annotation inconsistency in the existing datasets, particularly when the labels are semantically similar.