论文标题

审查中的70年地球科学的机器学习

70 years of machine learning in geoscience in review

论文作者

Dramsch, Jesper Sören

论文摘要

这篇评论概述了地球科学中机器学习的发展。过去70年来,对机器学习应用程序的共同开发的彻底分析将机器学习的最新热情与地球科学的发展有关。我探讨了克里格(Kriging)向主流机器学习方法的转变,以及神经网络在地球科学中的历史应用,遵循了数十年来机器学习热情的一般趋势。此外,本章探讨了从数学基础知识和软件开发知识转变为模型验证,应用统计和综合主题专业知识的技能。该评论散布在代码示例中,以补充理论基础,并说明了模型验证和机器学习对科学的解释性。这篇评论的范围包括各种浅机学习方法,例如决策树,随机森林,支持媒介机和高斯过程,以及深层神经网络,包括前馈神经网络,卷积神经网络,经常性神经网络和生成的对抗网络。关于地球科学,审查对地球物理学有偏见,但旨在与地球化学,地统计学和地质学取得平衡,但是排除了遥感,因为这将超过范围。总的来说,我旨在为有关研究,硬件和软件开发的深度学习的最新热情提供背景,以成功地在地球科学的所有学科中成功地应用浅层和深度的机器学习。

This review gives an overview of the development of machine learning in geoscience. A thorough analysis of the co-developments of machine learning applications throughout the last 70 years relates the recent enthusiasm for machine learning to developments in geoscience. I explore the shift of kriging towards a mainstream machine learning method and the historic application of neural networks in geoscience, following the general trend of machine learning enthusiasm through the decades. Furthermore, this chapter explores the shift from mathematical fundamentals and knowledge in software development towards skills in model validation, applied statistics, and integrated subject matter expertise. The review is interspersed with code examples to complement the theoretical foundations and illustrate model validation and machine learning explainability for science. The scope of this review includes various shallow machine learning methods, e.g. Decision Trees, Random Forests, Support-Vector Machines, and Gaussian Processes, as well as, deep neural networks, including feed-forward neural networks, convolutional neural networks, recurrent neural networks and generative adversarial networks. Regarding geoscience, the review has a bias towards geophysics but aims to strike a balance with geochemistry, geostatistics, and geology, however excludes remote sensing, as this would exceed the scope. In general, I aim to provide context for the recent enthusiasm surrounding deep learning with respect to research, hardware, and software developments that enable successful application of shallow and deep machine learning in all disciplines of Earth science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源