论文标题
通过数据驱动的目标优化交互式系统
Optimizing Interactive Systems via Data-Driven Objectives
论文作者
论文摘要
有效优化对于现实世界交互式系统至关重要,以响应不断变化的用户行为,提供令人满意的用户体验。但是,找到一个针对交互式系统(例如,以任务为导向的对话系统中的策略学习)进行优化的目标通常是具有挑战性的。通常,此类目标是手动制作的,很少以准确的方式捕获复杂的用户需求。我们提出了一种直接从观察到的用户互动中渗透目标的方法。这些推论都可以进行,无论先验知识和跨不同类型的用户行为。我们引入了交互式系统优化器(ISO),这是一种新型算法,它使用这些推断的目标进行优化。我们的主要贡献是一种使用数据驱动目标优化交互式系统的新的一般原则性方法。我们证明了ISO在几个模拟中的高效性。
Effective optimization is essential for real-world interactive systems to provide a satisfactory user experience in response to changing user behavior. However, it is often challenging to find an objective to optimize for interactive systems (e.g., policy learning in task-oriented dialog systems). Generally, such objectives are manually crafted and rarely capture complex user needs in an accurate manner. We propose an approach that infers the objective directly from observed user interactions. These inferences can be made regardless of prior knowledge and across different types of user behavior. We introduce Interactive System Optimizer (ISO), a novel algorithm that uses these inferred objectives for optimization. Our main contribution is a new general principled approach to optimizing interactive systems using data-driven objectives. We demonstrate the high effectiveness of ISO over several simulations.