论文标题
双曲线空间中最小亚曼叶的刚度和稳定性估计值
Rigidity and stability estimates for minimal submanifolds in the hyperbolic space
论文作者
论文摘要
在本文中,我们在双曲空间$ \ mathbb {h}^{n+m} $的第二个基本形式的长度上建立条件,以表明$ m^n $完全是地理的。在$ \ mathbb {h}^{4} $中,我们还获得了超稳定性操作员的第一个特征值的尖锐上限估计。
In this paper we establish conditions on the length of the second fundamental form of a complete minimal submanifold $M^n$ in the hyperbolic space $\mathbb{H}^{n+m}$ in order to show that $M^n$ is totally geodesic. We also obtain sharp upper bounds estimates for the first eigenvalue of the super stability operator in the case of $M$ is a surface in $\mathbb{H}^{4}$.