论文标题

多变量时间序列预测的低级别自动张量完成

Low-Rank Autoregressive Tensor Completion for Multivariate Time Series Forecasting

论文作者

Chen, Xinyu, Sun, Lijun

论文摘要

时间序列预测一直是一个长期的研究主题,也是许多领域中的重要应用。从传感器网络收集的现代时间序列(例如能源消耗和交通流量)通常是大规模的,并且与相当大的腐败和缺失值不完整,因此难以执行准确的预测。在本文中,我们提出了一个低级别的自动张量张量完成(LATC)框架,以建模多元时间序列数据。 LATC的关键是将原始的多变量时间序列矩阵(例如传感器$ \ times $时间点)转换为三阶张量结构(例如,传感器$ \ times $ \ times $ times $ time $ \ times $ \ times $ day),通过引入附加的时间尺寸,这使我们能够对固有的rhythm and of Time as as Global as af Global as af Global af Global af Global af Global af Global af Global af Global af Global af Global af Global模式进行建模。借助张量结构,我们可以将时间序列预测和缺失的数据插补问题转换为通用的低级张量完成问题。除了最小化张量等级外,我们还将原始矩阵表示的新型自回归规范整合到目标函数中。这两个组件扮演着不同的角色。低级结构使我们能够有效地捕获所有三个维度的全球一致性和趋势(即传感器之间的相似性,不同日子的相似性以及当前时间v.s.在历史日期的同一时间)。自回归规范可以更好地对当地时间趋势进行建模。我们对三个现实世界数据集的数值实验表明,在缺少数据插补和滚动预测任务中,LATC全球和局部趋势的整合的优势。

Time series prediction has been a long-standing research topic and an essential application in many domains. Modern time series collected from sensor networks (e.g., energy consumption and traffic flow) are often large-scale and incomplete with considerable corruption and missing values, making it difficult to perform accurate predictions. In this paper, we propose a low-rank autoregressive tensor completion (LATC) framework to model multivariate time series data. The key of LATC is to transform the original multivariate time series matrix (e.g., sensor$\times$time point) to a third-order tensor structure (e.g., sensor$\times$time of day$\times$day) by introducing an additional temporal dimension, which allows us to model the inherent rhythms and seasonality of time series as global patterns. With the tensor structure, we can transform the time series prediction and missing data imputation problems into a universal low-rank tensor completion problem. Besides minimizing tensor rank, we also integrate a novel autoregressive norm on the original matrix representation into the objective function. The two components serve different roles. The low-rank structure allows us to effectively capture the global consistency and trends across all the three dimensions (i.e., similarity among sensors, similarity of different days, and current time v.s. the same time of historical days). The autoregressive norm can better model the local temporal trends. Our numerical experiments on three real-world data sets demonstrate the superiority of the integration of global and local trends in LATC in both missing data imputation and rolling prediction tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源