论文标题

再生成分中等零件:常规变化的情况

Moderate parts in regenerative compositions: the case of regular variation

论文作者

Buraczewski, Dariusz, Dovgay, Bohdan, Marynych, Alexander

论文摘要

整数$ n $的再生随机组成是通过分配$ n $标准指数积分在可数的间隔数中构建的,其中包括下属$ s $的封闭范围的补充。 Assuming that the Lévy measure of $S$ is infinite and regularly varying at zero of index $-α$, $α\in(0,\,1)$, we find an explicit threshold $r=r(n)$, such that the number $K_{n,\,r(n)}$ of blocks of size $r(n)$ converges in distribution without any normalization to a mixed Poisson distribution.序列$(r(n))$ juart定期随索引$α/(α+1)$变化,混合分布是$ s $的指数函数的。结果是由于通用泊松限制了无限占用方案的总定理的结果,并具有频率的功率衰减。我们还讨论$ k_ {n,\,w(n)} $的渐近行为,当$ w(n)$ diverges但增长慢于$ r(n)$时。我们的发现补充了以前已知的大数字法律,以$ k_ {n,\,r} $在\ mathbb {n} $中固定的$ r \。作为一个关键工具,我们采用新的Abelian定理来进行拉普拉斯 - StileTjes会随着规则变化的索引变化的定期变化而变化,定期变化。

A regenerative random composition of integer $n$ is constructed by allocating $n$ standard exponential points over a countable number of intervals, comprising the complement of the closed range of a subordinator $S$. Assuming that the Lévy measure of $S$ is infinite and regularly varying at zero of index $-α$, $α\in(0,\,1)$, we find an explicit threshold $r=r(n)$, such that the number $K_{n,\,r(n)}$ of blocks of size $r(n)$ converges in distribution without any normalization to a mixed Poisson distribution. The sequence $(r(n))$ turns out to be regularly varying with index $α/(α+1)$ and the mixing distribution is that of the exponential functional of $S$. The result is derived as a consequence of a general Poisson limit theorem for an infinite occupancy scheme with power-like decay of the frequencies. We also discuss asymptotic behavior of $K_{n,\,w(n)}$ in cases when $w(n)$ diverges but grows slower than $r(n)$. Our findings complement previously known strong laws of large numbers for $K_{n,\,r}$ in case of a fixed $r\in\mathbb{N}$. As a key tool we employ new Abelian theorems for Laplace--Stiletjes transforms of regularly varying functions with the indexes of regular variation diverging to infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源