论文标题
DSDANET:用于跨域变化检测的深暹罗域适应卷积神经网络
DSDANet: Deep Siamese Domain Adaptation Convolutional Neural Network for Cross-domain Change Detection
论文作者
论文摘要
变更检测(CD)是遥感中最重要的应用之一。最近,深度学习在CD任务中实现了有希望的表现。但是,深层模型是特定于任务的,CD数据集偏差通常存在,因此,不可避免的是,Deep CD模型将其从原始CD数据集传输到新数据集后会遭受降解的性能,从而使新数据集中的许多样本不可避免地标记,这会花费大量时间和人工劳动。如何在数据集中学习具有足够标记的数据(原始域)的数据集中的可转移CD模型,但是可以很好地检测其他数据集的变化而没有标记的数据(目标域)?这被定义为跨域变更检测问题。在本文中,我们提出了一种新型的深层暹罗域适应性卷积神经网络(DSDANET)结构,用于跨域CD。在DSDANET中,暹罗卷积神经网络首先提取了来自多时间图像的空间光谱特征。然后,通过多内核最大平均差异(MK-MMD),学习的特征表示形式嵌入到繁殖的内核希尔伯特空间(RKHS)中,其中可以显式匹配两个域的分布。通过使用源标记的数据和目标未标记的数据优化网络参数和内核系数,DSDANET可以学习可转让的特征表示,可以弥合两个域之间的差异。据我们所知,这是第一次为CD提出这样的基于域的自适应深网。理论分析和实验结果证明了该方法的有效性和潜力。
Change detection (CD) is one of the most vital applications in remote sensing. Recently, deep learning has achieved promising performance in the CD task. However, the deep models are task-specific and CD data set bias often exists, hence it is inevitable that deep CD models would suffer degraded performance after transferring it from original CD data set to new ones, making manually label numerous samples in the new data set unavoidable, which costs a large amount of time and human labor. How to learn a transferable CD model in the data set with enough labeled data (original domain) but can well detect changes in another data set without labeled data (target domain)? This is defined as the cross-domain change detection problem. In this paper, we propose a novel deep siamese domain adaptation convolutional neural network (DSDANet) architecture for cross-domain CD. In DSDANet, a siamese convolutional neural network first extracts spatial-spectral features from multi-temporal images. Then, through multi-kernel maximum mean discrepancy (MK-MMD), the learned feature representation is embedded into a reproducing kernel Hilbert space (RKHS), in which the distribution of two domains can be explicitly matched. By optimizing the network parameters and kernel coefficients with the source labeled data and target unlabeled data, DSDANet can learn transferrable feature representation that can bridge the discrepancy between two domains. To the best of our knowledge, it is the first time that such a domain adaptation-based deep network is proposed for CD. The theoretical analysis and experimental results demonstrate the effectiveness and potential of the proposed method.