论文标题
G1020:用于计算机辅助青光眼检测的基准视网膜眼底图像数据集
G1020: A Benchmark Retinal Fundus Image Dataset for Computer-Aided Glaucoma Detection
论文作者
论文摘要
自动化青光眼检测的大型公开视网膜底面图像数据集的稀缺一直是成功将人工智能应用于实用的计算机辅助诊断(CAD)的瓶颈。一些可用于研究社区的小型数据集通常会遭受不切实际的图像捕获条件和严格的纳入标准。这些已经有限的现有数据集选择中的这些缺点使成熟的CAD系统变得具有挑战性,以便它可以在实际环境中执行。在本文中,我们提出了一个大型公开可用的视网膜眼底图像数据集,用于青光眼分类,称为G1020。该数据集是通过符合常规眼科中的标准实践来策划的,并有望用作青光眼检测的标准基准数据集。该数据库由1020个高分辨率颜色图像组成,并为青光眼诊断,光盘和光学杯细分,垂直杯盘比率,下次,上,上级,鼻腔和颞骨蛋白四合一的神经视网膜轮辋的大小以及视盘的边界盒位置提供了地面真相注释。我们还通过进行广泛的实验来报告基线结果,以实现视盘和视杯的自动化诊断和分割。
Scarcity of large publicly available retinal fundus image datasets for automated glaucoma detection has been the bottleneck for successful application of artificial intelligence towards practical Computer-Aided Diagnosis (CAD). A few small datasets that are available for research community usually suffer from impractical image capturing conditions and stringent inclusion criteria. These shortcomings in already limited choice of existing datasets make it challenging to mature a CAD system so that it can perform in real-world environment. In this paper we present a large publicly available retinal fundus image dataset for glaucoma classification called G1020. The dataset is curated by conforming to standard practices in routine ophthalmology and it is expected to serve as standard benchmark dataset for glaucoma detection. This database consists of 1020 high resolution colour fundus images and provides ground truth annotations for glaucoma diagnosis, optic disc and optic cup segmentation, vertical cup-to-disc ratio, size of neuroretinal rim in inferior, superior, nasal and temporal quadrants, and bounding box location for optic disc. We also report baseline results by conducting extensive experiments for automated glaucoma diagnosis and segmentation of optic disc and optic cup.