论文标题

从社区生成的街道图像中预测生计指标

Predicting Livelihood Indicators from Community-Generated Street-Level Imagery

论文作者

Lee, Jihyeon, Grosz, Dylan, Uzkent, Burak, Zeng, Sicheng, Burke, Marshall, Lobell, David, Ermon, Stefano

论文摘要

政府和其他大型组织的重大决定依赖于民众福祉的衡量标准,但是在大规模的大规模进行此类衡量标准是昂贵的,因此在整个发展中国家中很少见。我们提出了一种廉价,可扩展且可解释的方法,以预测公共众群体街头图像的关键生计指标。与传统的测量方法相比,这种图像可以廉价地收集,并且更频繁地更新,同时包含一系列生计指标的合理相关信息。我们提出了两种从街道图像中学习的方法:(1)一种通过检测信息性对象以及(2)基于图的方法来捕获图像之间关系的方法,从而创建多农户群集表示。通过可视化哪些功能对模型很重要及其使用方式,我们可以帮助最终用户组织了解模型,并为使用便宜获得的道路功能提供索引估算的替代方法。通过将我们的结果与在全国代表性家庭调查中收集的地面数据进行比较,我们证明了我们的方法的表现,可以通过在印度和肯尼亚的两个不同国家进行测试来准确预测贫困,人口和健康及其可伸缩性的指标。我们的代码可在https://github.com/sustainlab-group/mapillarygcn上找到。

Major decisions from governments and other large organizations rely on measurements of the populace's well-being, but making such measurements at a broad scale is expensive and thus infrequent in much of the developing world. We propose an inexpensive, scalable, and interpretable approach to predict key livelihood indicators from public crowd-sourced street-level imagery. Such imagery can be cheaply collected and more frequently updated compared to traditional surveying methods, while containing plausibly relevant information for a range of livelihood indicators. We propose two approaches to learn from the street-level imagery: (1) a method that creates multi-household cluster representations by detecting informative objects and (2) a graph-based approach that captures the relationships between images. By visualizing what features are important to a model and how they are used, we can help end-user organizations understand the models and offer an alternate approach for index estimation that uses cheaply obtained roadway features. By comparing our results against ground data collected in nationally-representative household surveys, we demonstrate the performance of our approach in accurately predicting indicators of poverty, population, and health and its scalability by testing in two different countries, India and Kenya. Our code is available at https://github.com/sustainlab-group/mapillarygcn.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源