论文标题

可压缩混合晶格玻尔兹曼方法的线性稳定性分析

A linear stability analysis of compressible hybrid lattice Boltzmann methods

论文作者

Renard, Florian, Wissocq, Gauthier, Boussuge, Jean-François, Sagaut, Pierre

论文摘要

提出了标准晶格上可压缩杂种晶格玻尔兹曼方法(HLBM)的原始光谱研究。在此框架中,使用晶格玻尔兹曼方法(LBM)来解决质量和动量方程,而有限差(FD)方案求解了能量方程。得益于理想的状态气体方程,这两种系统彼此相连。这项工作旨在回答有关此类模型的数值稳定性的一些问题,这些问题在很大程度上取决于数值参数的选择。在此范围内,仔细检查了基于不同能量变量,公式(原始或保守的),碰撞项和数值方案的几个一维HLBM类。一旦引入了适当的纠正术语,就表明所有连续的HLBM类都恢复了线性近似中的Navier-Stok-Stok-Stok-Stoke-Stoke-Stoke-Stoke-Stoke-Stoke-Stoke-Stoke-Stoke-Stoke-Stoke fourier行为。但是,当分析离散对应物时,HLBM类之间会出现明显的差异。指出了在较高的马赫数下产生的多种不稳定性机制,并引入了两种详尽的稳定策略:(1)通过更改参考温度$ t_ {ref} $和(2)通过碰撞操作员更改参考温度$ t_ {ref} $和(2)通过更改参考温度$ t_ {ref} $和(2)来减少时间步骤。一项完整的参数研究表明,只有基于原始和保守的熵方程的HLBM类可用于可压缩应用。最后,对熵类的宏观模态组成进行了创新研究。通过这项研究,强调并确认了两个原始现象,称为剪切到进度和熵向剪切转移。

An original spectral study of the compressible hybrid lattice Boltzmann method (HLBM) on standard lattice is proposed. In this framework, the mass and momentum equations are addressed using the lattice Boltzmann method (LBM), while finite difference (FD) schemes solve an energy equation. Both systems are coupled with each other thanks to an ideal gas equation of state. This work aims at answering some questions regarding the numerical stability of such models, which strongly depends on the choice of numerical parameters. To this extent, several one- and two-dimensional HLBM classes based on different energy variables, formulation (primitive or conservative), collision terms and numerical schemes are scrutinized. Once appropriate corrective terms introduced, it is shown that all continuous HLBM classes recover the Navier-Stokes Fourier behavior in the linear approximation. However, striking differences arise between HLBM classes when their discrete counterparts are analysed. Multiple instability mechanisms arising at relatively high Mach number are pointed out and two exhaustive stabilization strategies are introduced: (1) decreasing the time step by changing the reference temperature $T_{ref}$ and (2) introducing a controllable numerical dissipation $σ$ via the collision operator. A complete parametric study reveals that only HLBM classes based on the primitive and conservative entropy equations are found usable for compressible applications. Finally, an innovative study of the macroscopic modal composition of the entropy classes is conducted. Through this study, two original phenomena, referred to as shear-to-entropy and entropy-to-shear transfers, are highlighted and confirmed on standard two-dimensional test cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源