论文标题
非结构化网格上磁性流体动力学高阶溶液的开放边界条件
An open boundary condition for high-order solutions of magnetohydrodynamics on unstructured grids
论文作者
论文摘要
在本文中,提出了基于特征的开放边界条件(CBC)针对方程的磁性水力动力学(MHD)系统。该算法是在广义Lagrange乘数(GLM)-MHD方程系统下的高阶重建方案(FR)方案的上下文中精心设计和实现的。它是通过将特征方程式直接添加到FR方案中校正的通量项中的贡献来实现的,该方案可以通过沿边界面的时间依赖时间相关的特征方程式来分配FR方案。在解决1D,2D和3D测试问题中,CBC方法比常用的零正常衍生物(ZnD)和近似Riemann求解器边界条件(ARBC)更准确,更健壮。 CBC方法已成功应用于模拟磁重新连接的挑战性问题,在长期整合时间集成中,其他选项未能获得稳定的结果。
In this paper a characteristics-based open boundary condition (CBC) is proposed for the magnetohydrodynamic (MHD) system of equations. The algorithm is carefully designed and implemented in the context of a high-order flux reconstruction (FR) scheme under the Generalized Lagrange Multiplier (GLM)-MHD system of equations. It is implemented by adding the contribution of the characteristic equation directly to the corrected flux term in the FR scheme dispensing with solving time-dependent characteristic equations along boundary faces. The CBC method is shown to be more accurate and robust than commonly used zero normal derivative (ZND) and approximate Riemann solver boundary conditions (ARBC) in solving 1D, 2D, and 3D test problems. The CBC method is successfully applied to simulate challenging problems of magnetic reconnection for which other options failed to get stable results over long-period time integration.