论文标题

动态特征采集,并有任意条件流动

Dynamic Feature Acquisition with Arbitrary Conditional Flows

论文作者

Li, Yang, Oliva, Junier B.

论文摘要

许多现实世界中的情况允许在使用有限或不确定数据进行评估时获取其他相关信息。但是,传统的ML方法要么需要事先获得所有功能,要么将其中一部分视为无法获取的缺少数据。在这项工作中,我们提出了动态获取新功能以进一步改善预测评估的模型。为了通过收购成本进行权衡改善,我们利用信息理论指标,条件相互信息,选择要获取的最有用的功能。我们利用生成模型,任意条件流(ACFLOW)来了解估计信息度量所需的任意条件分布。我们还学习一个贝叶斯网络以加速采集过程。我们的模型表明,在多种设置中评估的基线比基线表现出色。

Many real-world situations allow for the acquisition of additional relevant information when making an assessment with limited or uncertain data. However, traditional ML approaches either require all features to be acquired beforehand or regard part of them as missing data that cannot be acquired. In this work, we propose models that dynamically acquire new features to further improve the prediction assessment. To trade off the improvement with the cost of acquisition, we leverage an information theoretic metric, conditional mutual information, to select the most informative feature to acquire. We leverage a generative model, arbitrary conditional flow (ACFlow), to learn the arbitrary conditional distributions required for estimating the information metric. We also learn a Bayesian network to accelerate the acquisition process. Our model demonstrates superior performance over baselines evaluated in multiple settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源