论文标题

在半金属中控制磁性顺序,磁各向异性和带拓扑$ {\ rm sr(mn_ {0.9} cu_ {0.1})sb_2} $和$ {\ rm sr(mn_ {0.9} Zn_ {0.1} Zn_ {0.1})

Controlling Magnetic Order, Magnetic Anisotropy, and Band Topology in Semimetals ${\rm Sr(Mn_{0.9}Cu_{0.1})Sb_2}$ and ${\rm Sr(Mn_{0.9}Zn_{0.1})Sb_2}$

论文作者

Islam, Farhan, Choudhary, Renu, Liu, Yong, Ueland, Benjamin G., Paudyal, Durga, Heitmann, Thomas, McQueeney, Robert J., Vaknin, David

论文摘要

中子衍射和磁敏感性研究表明,拓扑半法的正交单晶$ {\ rm sr(\ rm sr(mn_ {0.9} cu_ {0.1}) Mn $^{2+} $ imments $ t_n = 200 \ pm10 $和$ 210 \ pm12 $ k的Mn $^{2+} $ imments的抗铁磁(AFM)订购,大大低于pent srmnsb $ _2 $的$ _2 $,带有$ t_n = 297 = 297 $ k. pm 3 $ k.Magnet applied Magnetifiend vers vers vess vers vess vers vers vess vers vers vers vers forp pm to $ t_n $与母体化合物相比,Zn掺杂晶体的De Haas Van Alphen振荡略微修饰。相比之下,CU掺杂的系统未显示De Haas Van Alphen磁振荡,这表明MN的CU取代会改变父的电子结构,或者CU位点是载体的强散射器,它们显着缩短了其平均自由路径,从而减少了振动振荡。包括自旋轨道耦合在内的密度功能理论(DFT)计算预测父,Cu-和Zn掺杂系统的C型AFM状态,并识别$ A $ A-axis(即垂直于MN层)为父母的易于磁化方向和Cu或Zn neturections的易于磁化方向。相比之下,25%的Cu含量将易于磁化的磁化变化为$ B $轴(即MN层内)。我们发现,在srmnsb $ _2 $调谐费米水平附近的电子带中,将Cu和Zn掺入,从而产生了不同的带拓扑和半金属性。母体和Zn掺杂的系统具有电子和孔口袋共存,围绕Y点圆锥,而Cu掺杂的系统则在费米水平周围具有主孔口袋,并带有变形的狄拉克锥。可调电子结构可能指出了合理化实验观察到的De Haas van Alphen磁振荡的可能性。

Neutron diffraction and magnetic susceptibility studies show that orthorhombic single-crystals of topological semimetals ${\rm Sr(Mn_{0.9}Cu_{0.1})Sb_2}$ and ${\rm Sr(Mn_{0.9}Zn_{0.1})Sb_2}$ undergo three dimensional C-type antiferromagnetic (AFM) ordering of the Mn$^{2+}$ moments at $T_N = 200\pm10$ and $210\pm12$ K, respectively, significantly lower than that of the parent SrMnSb$_2$ with $T_N=297 \pm 3$ K. Magnetization versus applied magnetic field (perpendicular to MnSb planes) below $T_N$ exhibits slightly modified de Haas van Alphen oscillations for the Zn-doped crystal as compared to that of the parent compound. By contrast, the Cu-doped system does not show de Haas van Alphen magnetic oscillations, suggesting that either Cu substitution for Mn changes the electronic structure of the parent compound substantially, or that the Cu sites are strong scatterers of carriers that significantly shorten their mean free path thus diminishing the oscillations. Density functional theory (DFT) calculations including spin-orbit coupling predict the C-type AFM state for the parent, Cu-, and Zn-doped systems and identify the $a$-axis (i.e., perpendicular to the Mn layer) as the easy magnetization direction in the parent and 12.5% of Cu or Zn substitutions. In contrast, 25% of Cu content changes the easy magnetization to the $b$-axis (i.e., within the Mn layer). We find that the incorporation of Cu and Zn in SrMnSb$_2$ tunes electronic bands near the Fermi level resulting in different band topology and semi-metallicity. The parent and Zn-doped systems have coexistence of electron and hole pockets with opened Dirac cone around the Y-point whereas the Cu-doped system has dominant hole pockets around the Fermi level with a distorted Dirac cone. The tunable electronic structure may point out possibilities of rationalizing the experimentally observed de Haas van Alphen magnetic oscillations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源