论文标题

逐步解释如何解决约束满意度问题的框架

A framework for step-wise explaining how to solve constraint satisfaction problems

论文作者

Bogaerts, Bart, Gamba, Emilio, Guns, Tias

论文摘要

我们探讨了逐步解释如何通过逻辑网格难题的用例来解释如何解决约束满意度问题的问题。更具体地说,我们研究了解释一个人在传播过程中可以采取的推理步骤的问题,这种方式易于解释一个人。因此,我们旨在为约束求解器提供可解释的代理,这可以通过能够理解甚至从解释中学习来帮助建立对求解器的信任。主要的挑战是找到一系列简单解释的序列,在这些解释中,每个解释都应在认知上尽可能容易地验证和理解。这与求解器在传播时可能使用的事实和约束的任意组合形成对比。我们建议使用成本函数来量化对推理步骤的个人解释的简单性,并确定找到CSP解释的最佳序列的解释产生问题。我们的方法是基本约束传播机制的不可知论,即使是由约束组合产生的推理步骤,也可以提供解释。如果涉及多个约束,我们还开发了一种机制,该机制允许打破最困难的步骤,从而使用户能够放大说明的特定部分。我们提出的算法迭代通过使用成本函数的乐观估算来指导每个步骤中最佳解释的搜索,从而构建了解释顺序。我们对逻辑网格难题的实验表明,根据单个解释的质量以及获得的解释序列,该方法的可行性。

We explore the problem of step-wise explaining how to solve constraint satisfaction problems, with a use case on logic grid puzzles. More specifically, we study the problem of explaining the inference steps that one can take during propagation, in a way that is easy to interpret for a person. Thereby, we aim to give the constraint solver explainable agency, which can help in building trust in the solver by being able to understand and even learn from the explanations. The main challenge is that of finding a sequence of simple explanations, where each explanation should aim to be as cognitively easy as possible for a human to verify and understand. This contrasts with the arbitrary combination of facts and constraints that the solver may use when propagating. We propose the use of a cost function to quantify how simple an individual explanation of an inference step is, and identify the explanation-production problem of finding the best sequence of explanations of a CSP. Our approach is agnostic of the underlying constraint propagation mechanisms, and can provide explanations even for inference steps resulting from combinations of constraints. In case multiple constraints are involved, we also develop a mechanism that allows to break the most difficult steps up and thus gives the user the ability to zoom in on specific parts of the explanation. Our proposed algorithm iteratively constructs the explanation sequence by using an optimistic estimate of the cost function to guide the search for the best explanation at each step. Our experiments on logic grid puzzles show the feasibility of the approach in terms of the quality of the individual explanations and the resulting explanation sequences obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源