论文标题
在Abelian超复杂的Nilmanifolds上的Quaternionic calabi猜想被视为Tori纤维
The quaternionic Calabi conjecture on abelian hypercomplex nilmanifolds viewed as tori fibrations
论文作者
论文摘要
我们研究了由Alesker和verbitsky在具有Abelian超复合结构的8维2步尼尔曼福尔德(Nilmanifolds)上引入的HKT几何形状中的Quaternionic calabi-yau问题。我们表明,这些歧管上的Quaternionic monge-ampère方程始终可以解决每个数据,这是通过3维圆环的作用而不变的。
We study the quaternionic Calabi-Yau problem in HKT geometry introduced by Alesker and Verbitsky on 8-dimensional 2-step nilmanifolds with an abelian hypercomplex structure. We show that the quaternionic Monge-Ampère equation on these manifolds can always be solved for every data which is invariant by the action of a 3-dimensional torus.