论文标题
使用第一个尖峰编码的硬件实现尖峰神经网络
Hardware Implementation of Spiking Neural Networks Using Time-To-First-Spike Encoding
论文作者
论文摘要
由于低功耗和高度平行的操作,基于硬件的尖峰神经网络(SNN)被认为是认知计算系统的有前途的候选人。在这项工作中,我们训练SNN使用时间反向传播射击时间传递信息。具有512个隐藏神经元的时间编码的SNN对于MNIST测试集的精度为96.90%。此外,研究了设备变化对时间编码的SNN精度的影响,并将其与速率编码网络的效果进行比较。在我们的SNN的硬件配置中,具有非对称浮动门的Nor-Type模拟内存被用作突触设备。此外,我们提出了一个神经元电路,其中包括用于时间编码的SNN的耐火周期发生器。通过使用香料的电路模拟评估了由突触和建议神经元组成的2层神经网络的性能。与MNIST数据集的系统模拟相比,具有128个隐藏神经元的网络的精度为94.9%,降低了0.1%。最后,分析了构成时间网络的每个块的延迟和功耗,并根据总时间步长将其与速率编码网络的延迟和功耗进行了比较。假设网络的总时间步数为256,时间网络的功率比速率编码的网络低15.12倍,并且可以更快地决定决策5.68倍。
Hardware-based spiking neural networks (SNNs) are regarded as promising candidates for the cognitive computing system due to low power consumption and highly parallel operation. In this work, we train the SNN in which the firing time carries information using temporal backpropagation. The temporally encoded SNN with 512 hidden neurons showed an accuracy of 96.90% for the MNIST test set. Furthermore, the effect of the device variation on the accuracy in temporally encoded SNN is investigated and compared with that of the rate-encoded network. In a hardware configuration of our SNN, NOR-type analog memory having an asymmetric floating gate is used as a synaptic device. In addition, we propose a neuron circuit including a refractory period generator for temporally encoded SNN. The performance of the 2-layer neural network consisting of synapses and proposed neurons is evaluated through circuit simulation using SPICE. The network with 128 hidden neurons showed an accuracy of 94.9%, a 0.1% reduction compared to that of the system simulation of the MNIST dataset. Finally, the latency and power consumption of each block constituting the temporal network is analyzed and compared with those of the rate-encoded network depending on the total time step. Assuming that the total time step number of the network is 256, the temporal network consumes 15.12 times lower power than the rate-encoded network and can make decisions 5.68 times faster.