论文标题
Alpine-Alma [C II]调查:[C II] 158微米发射线的光度功能在$ z \ sim 4-6 $
The ALPINE-ALMA [C II] Survey: [C II]158micron Emission Line Luminosity Functions at $z \sim 4-6$
论文作者
论文摘要
我们使用118个来源的ALMA观测值介绍了[CII] 158 $ $ M $ M线光度功能(LFS),以$ z \ sim4-6 $介绍,这些观测值选择具有紫外线液体$ M_ {1500A} <-20.2 $ and optical Spectralspical spectroscopic Redshifts in Cosmos和Ecmos和Ecdf-s and Ecdf-s。在118个目标中,有75个具有显着的[CII]检测,而43个是上限。这是迄今为止[CII]检测的最大样本,它使我们能够以$ z \ sim4-6 $设置[CII]发射器的体积密度的约束。但是,由于这是一个紫外线选择的样本,因此我们缺少[CII]闪烁,但紫外线源使我们的约束严格下限。我们派生的LFS在统计上与$ z \ sim0 $ [CII] lf $ 10^{8.25} -10^{9.75} l_ \ odot $一致。我们将结果与来自高山图中偶然源的[CII] LF的上限进行了比较(Loiacono等,2020)。我们还根据$ z \ sim4-6 $推断出[CII] LFS。将强大的下限与这些其他估计相结合,我们将进一步的限制设置为[CII]发射器的真实数量密度为$ z \ sim 4-6 $。这些额外的LF估计在很大程度上高于我们的LF $ l _ {[CII]}> 10^9L _ {\ odot} $,这表明UV-Faint,但[CII] - Bright来源可能对[CII]发射机体积密度做出了重大贡献。当我们包含所有LF估计值时,我们发现可用的模型预测低估了[CII]发射器在$ z \ sim4-6 $中的数量密度。最后,我们对分子气体质量密度密度设置为$ z \ sim4-6 $,使用$ρ_{mol} \ sim(2-7)\ times10^7m_ \ odot $ \,mpc $^{ - 3} $。这与以前的研究大致一致。
We present the [CII]158$μ$m line luminosity functions (LFs) at $z\sim4-6$ using the ALMA observations of 118 sources, which are selected to have UV luminosity $M_{1500A}<-20.2$ and optical spectroscopic redshifts in COSMOS and ECDF-S. Of the 118 targets, 75 have significant [CII] detections and 43 are upper limits. This is by far the largest sample of [CII] detections which allows us to set constraints to the volume density of [CII] emitters at $z\sim4-6$. But because this is a UV-selected sample, we are missing [CII]-bright but UV-faint sources making our constraints strict lower limits. Our derived LFs are statistically consistent with the $z\sim0$ [CII] LF at $10^{8.25} - 10^{9.75}L_\odot$. We compare our results with the upper limits of the [CII] LF derived from serendipitous sources in the ALPINE maps (Loiacono et al. 2020). We also infer the [CII] LFs based on published far-IR and CO LFs at $z\sim4-6$. Combining our robust lower limits with these additional estimates, we set further constraints to the true number density of [CII] emitters at $z\sim 4 - 6$. These additional LF estimates are largely above our LF at $L_{[CII]}>10^9L_{\odot}$, suggesting that UV-faint but [CII]-bright sources likely make a significant contributions to the [CII] emitter volume density. When we include all the LF estimates, we find that available model predictions underestimate the number densities of [CII] emitters at $z\sim4-6$. Finally, we set a constraint on the molecular gas mass density at $z\sim4-6$, with $ρ_{mol} \sim (2-7)\times10^7M_\odot$\,Mpc$^{-3}$. This is broadly consistent with previous studies.