论文标题

Alpine-Alma [C II]调查:[C II] 158微米发射线的光度功能在$ z \ sim 4-6 $

The ALPINE-ALMA [C II] Survey: [C II]158micron Emission Line Luminosity Functions at $z \sim 4-6$

论文作者

Yan, Lin, Sajina, A., Loiacono, F., Lagache, G., Bèthermin, M., Faisst, A., Ginolfi, M., Fèvre, O. Le, Gruppioni, C., Capak, P. L., Cassata, P., Schaerer, D., Silverman, J. D., Bardelli, S., Dessauges-Zavadsky, M., Cimatti, A., Hathi, N. P., Lemaux, B. C., Ibar, E., Jones, G. C., Koekemoer, A. M., Oesch, P. A., Talia, M., Pozzi, F., Riechers, D. A., Tasca, L. A., Toft, S., Vallini, L., Vergani, D., Zamorani, G., Zucca, E.

论文摘要

我们使用118个来源的ALMA观测值介绍了[CII] 158 $ $ M $ M线光度功能(LFS),以$ z \ sim4-6 $介绍,这些观测值选择具有紫外线液体$ M_ {1500A} <-20.2 $ and optical Spectralspical spectroscopic Redshifts in Cosmos和Ecmos和Ecdf-s and Ecdf-s。在118个目标中,有75个具有显着的[CII]检测,而43个是上限。这是迄今为止[CII]检测的最大样本,它使我们能够以$ z \ sim4-6 $设置[CII]发射器的体积密度的约束。但是,由于这是一个紫外线选择的样本,因此我们缺少[CII]闪烁,但紫外线源使我们的约束严格下限。我们派生的LFS在统计上与$ z \ sim0 $ [CII] lf $ 10^{8.25} -10^{9.75} l_ \ odot $一致。我们将结果与来自高山图中偶然源的[CII] LF的上限进行了比较(Loiacono等,2020)。我们还根据$ z \ sim4-6 $推断出[CII] LFS。将强大的下限与这些其他估计相结合,我们将进一步的限制设置为[CII]发射器的真实数量密度为$ z \ sim 4-6 $。这些额外的LF估计在很大程度上高于我们的LF $ l _ {[CII]}> 10^9L _ {\ odot} $,这表明UV-Faint,但[CII] - Bright来源可能对[CII]发射机体积密度做出了重大贡献。当我们包含所有LF估计值时,我们发现可用的模型预测低估了[CII]发射器在$ z \ sim4-6 $中的数量密度。最后,我们对分子气体质量密度密度设置为$ z \ sim4-6 $,使用$ρ_{mol} \ sim(2-7)\ times10^7m_ \ odot $ \,mpc $^{ - 3} $。这与以前的研究大致一致。

We present the [CII]158$μ$m line luminosity functions (LFs) at $z\sim4-6$ using the ALMA observations of 118 sources, which are selected to have UV luminosity $M_{1500A}<-20.2$ and optical spectroscopic redshifts in COSMOS and ECDF-S. Of the 118 targets, 75 have significant [CII] detections and 43 are upper limits. This is by far the largest sample of [CII] detections which allows us to set constraints to the volume density of [CII] emitters at $z\sim4-6$. But because this is a UV-selected sample, we are missing [CII]-bright but UV-faint sources making our constraints strict lower limits. Our derived LFs are statistically consistent with the $z\sim0$ [CII] LF at $10^{8.25} - 10^{9.75}L_\odot$. We compare our results with the upper limits of the [CII] LF derived from serendipitous sources in the ALPINE maps (Loiacono et al. 2020). We also infer the [CII] LFs based on published far-IR and CO LFs at $z\sim4-6$. Combining our robust lower limits with these additional estimates, we set further constraints to the true number density of [CII] emitters at $z\sim 4 - 6$. These additional LF estimates are largely above our LF at $L_{[CII]}>10^9L_{\odot}$, suggesting that UV-faint but [CII]-bright sources likely make a significant contributions to the [CII] emitter volume density. When we include all the LF estimates, we find that available model predictions underestimate the number densities of [CII] emitters at $z\sim4-6$. Finally, we set a constraint on the molecular gas mass density at $z\sim4-6$, with $ρ_{mol} \sim (2-7)\times10^7M_\odot$\,Mpc$^{-3}$. This is broadly consistent with previous studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源