论文标题

BVAR连接:多主体矢量自回归模型的变异贝叶斯方法推断大脑连通性网络

BVAR-Connect: A Variational Bayes Approach to Multi-Subject Vector Autoregressive Models for Inference on Brain Connectivity Networks

论文作者

Kook, Jeong Hwan, Vaughn, Kelly A., DeMaster, Dana M., Ewing-Cobbs, Linda, Vannucci, Marina

论文摘要

在本文中,我们提出了BVAR连接,一种贝叶斯多主体矢量自回旋(VAR)模型的变异推理方法基于静止状态功能MRI数据,以推理有效的大脑连接性。建模框架使用贝叶斯变量选择方法,该方法灵活地集成了多模式数据,特别是结构扩散张量成像(DTI)数据,将其纳入先前的构造中。我们开发的变异推理方法允许可伸缩方法,并导致能够在数据的全脑广孔上估算主题和群体水平的大脑连接网络。我们简要说明了供公众使用的用户友好的MATLAB GUI。我们评估模拟数据的性能,在其中我们表明所提出的推理方法可以达到与基于采样的马尔可夫链蒙特卡洛方法相当的精度,但计算成本要低得多。我们还解决了样本量不平衡的主题组的情况。最后,我们说明了有关创伤性损伤病史的静息状态功能MRI和结构性DTI数据的方法。

In this paper we propose BVAR-connect, a variational inference approach to a Bayesian multi-subject vector autoregressive (VAR) model for inference on effective brain connectivity based on resting-state functional MRI data. The modeling framework uses a Bayesian variable selection approach that flexibly integrates multi-modal data, in particular structural diffusion tensor imaging (DTI) data, into the prior construction. The variational inference approach we develop allows scalability of the methods and results in the ability to estimate subject- and group-level brain connectivity networks over whole-brain parcellations of the data. We provide a brief description of a user-friendly MATLAB GUI released for public use. We assess performance on simulated data, where we show that the proposed inference method can achieve comparable accuracy to the sampling-based Markov Chain Monte Carlo approach but at a much lower computational cost. We also address the case of subject groups with imbalanced sample sizes. Finally, we illustrate the methods on resting-state functional MRI and structural DTI data on children with a history of traumatic injury.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源