论文标题
Sublattice对称性破坏和超低能量激励在HBN异质结构中
Sublattice symmetry breaking and ultra low energy excitations in Graphene-on-hBN Heterostructures
论文作者
论文摘要
石墨烯的低洼状态具有令人兴奋的拓扑特性,这些拓扑特性取决于不同对称性破坏项的相互作用。由于涉及的术语的低能尺度(几十个UEV),相应的能量差距仍未探索。这些低能量项包括Sublattice拆分,Rashba和内在的自旋轨道耦合,它们的平衡决定了拓扑特性。在这项工作中,我们揭示了六角形硼化硼化酯上石墨烯中的固有旋转轨道拆分产生的贡献。采用电阻检测的电子自旋共振,我们测量了20E-6 eV阶的转带分裂,并确认了大约45e-6 eV的固有旋转轨道耦合。后者的主导地位表明在拓扑上是非平凡的状态,涉及引人入胜的特性。电子自旋共振是在低能尺度下揭示有趣的带状结构的有前途的途径。
The low-lying states of graphene contain exciting topological properties that depend on the interplay of different symmetry breaking terms. The corresponding energy gaps remained unexplored until recently, owing to the low energy scale of the terms involved (few tens of ueV). These low energy terms include sublattice splitting, the Rashba and the intrinsic spin-orbit coupling, whose balance determines the topological properties. In this work, we unravel the contributions arising from the sublattice and the intrinsic spin orbit splitting in graphene on hexagonal boron-nitride. Employing resistively-detected electron spin resonance, we measure a sublattice splitting of the order of 20E-6 eV, and confirm an intrinsic spin orbit coupling of approximately 45E-6 eV. The dominance of the latter suggests a topologically non-trivial state, involving fascinating properties. Electron spin resonance is a promising route towards unveiling the intriguing band structure at low energy scales.