论文标题

经典Pauli粒子的慢歧管启用用于指导中心动力学的结构的几何算法

Slow manifolds of classical Pauli particle enable structure-preserving geometric algorithms for guiding center dynamics

论文作者

Xiao, Jianyuan, Qin, Hong

论文摘要

由于提出了指导中心的变异符号积分器[1,2],因此具有结构的几何算法已成为等离子体物理学的活跃研究领域。我们发现,经典Pauli粒子的缓慢流形使一个具有长期稳定性和准确性的指导中心动力学的结构具有结构性的几何算法。该发现克服了与不稳定的寄生模式相关的难度,当应用于退化引导中心拉格朗日时期时,变异符号积分器的难度。 Pauli的电子对电子的汉密尔顿人的介绍和粒子物理学的开始是一个令人惊讶的惊喜,在古典物理学中重新出现是解决重要的等离子体物理问题的有效算法。该技术适用于其他堕落的Lagrangians,从常规的Lagrangians中减少。

Since variational symplectic integrators for the guiding center was proposed [1,2], structure-preserving geometric algorithms have become an active research field in plasma physics. We found that the slow manifolds of the classical Pauli particle enable a family of structure-preserving geometric algorithms for guiding center dynamics with long-term stability and accuracy. This discovery overcomes the difficulty associated with the unstable parasitic modes for variational symplectic integrators when applied to the degenerate guiding center Lagrangian. It is a pleasant surprise that Pauli's Hamiltonian for electrons, which predated the Dirac equation and marks the beginning of particle physics, reappears in classical physics as an effective algorithm for solving an important plasma physics problem. This technique is applicable to other degenerate Lagrangians reduced from regular Lagrangians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源