论文标题
使用众包智能手机数据的道路等级估算
Road Grade Estimation Using Crowd-Sourced Smartphone Data
论文作者
论文摘要
道路级/坡度的估计可以为现有的2D数字路图添加另一个信息。道路等级信息的集成将扩大数字地图应用程序的范围,该应用程序主要用于导航,通过启用驾驶安全和效率应用,例如高级驾驶员辅助系统(ADAS),生态驾驶等。道路网络的巨大规模和动态性质使感应道路等级一项挑战性的任务。传统方法通常会遭受有限的可伸缩性和更新频率的影响,并且感知准确性差。为了克服这些问题,我们使用智能手机的传感器数据提出了一个具有成本效益且可扩展的道路等级估计框架。根据我们对智能手机传感器的错误特性的理解,我们将来自加速度计,陀螺仪和车辆速度数据的数据智能组合在一起,从OBD-II/智能手机的GPS到估计道路等级。为了提高系统的准确性和鲁棒性,从多个来源/车辆中对道路等级的估计是众包,以弥补来自不同来源的传感器数据质量的影响。在约9公里的测试路线上进行的广泛的实验评估证明了我们提出的方法的出色性能,可实现$ 5 \ times $ $改进的道路等级估计准确性,而基本线的估计准确性比90 \%\%低于0.3 $^\ circ $。
Estimates of road grade/slope can add another dimension of information to existing 2D digital road maps. Integration of road grade information will widen the scope of digital map's applications, which is primarily used for navigation, by enabling driving safety and efficiency applications such as Advanced Driver Assistance Systems (ADAS), eco-driving, etc. The huge scale and dynamic nature of road networks make sensing road grade a challenging task. Traditional methods oftentimes suffer from limited scalability and update frequency, as well as poor sensing accuracy. To overcome these problems, we propose a cost-effective and scalable road grade estimation framework using sensor data from smartphones. Based on our understanding of the error characteristics of smartphone sensors, we intelligently combine data from accelerometer, gyroscope and vehicle speed data from OBD-II/smartphone's GPS to estimate road grade. To improve accuracy and robustness of the system, the estimations of road grade from multiple sources/vehicles are crowd-sourced to compensate for the effects of varying quality of sensor data from different sources. Extensive experimental evaluation on a test route of ~9km demonstrates the superior performance of our proposed method, achieving $5\times$ improvement on road grade estimation accuracy over baselines, with 90\% of errors below 0.3$^\circ$.