论文标题
低能子空间中的哈密顿模拟
Hamiltonian simulation in the low-energy subspace
论文作者
论文摘要
我们研究了在Hamiltonian $ h $的低能量子空间上支持初始状态时模拟自旋系统动力学的问题。这是在多体系统及其他地区进行广泛应用的物理学中的一个核心问题,在低能领域中,有趣的物理学发生在这种情况下。我们分析了近似于演化运算符的产品公式引起的误差界限,并表明这些界限取决于$ h $的有效低能规范。我们发现,适用于一般情况的产品公式的最佳先前复杂性的改进,这些改进在长期演变时间内更为显着,以随着系统大小和/或小近似误差的比例扩展。为了获得这些改进,我们证明,由于产品公式,泄漏到高能子空间的上限呈指数衰减。我们的结果为在低能能下进行哈密顿模拟的系统研究提供了一条途径,这将是将量子模拟更接近现实所必需的。
We study the problem of simulating the dynamics of spin systems when the initial state is supported on a subspace of low energy of a Hamiltonian $H$. This is a central problem in physics with vast applications in many-body systems and beyond, where the interesting physics takes place in the low-energy sector. We analyze error bounds induced by product formulas that approximate the evolution operator and show that these bounds depend on an effective low-energy norm of $H$. We find improvements over the best previous complexities of product formulas that apply to the general case, and these improvements are more significant for long evolution times that scale with the system size and/or small approximation errors. To obtain these improvements, we prove exponentially decaying upper bounds on the leakage to high-energy subspaces due to the product formula. Our results provide a path to a systematic study of Hamiltonian simulation at low energies, which will be required to push quantum simulation closer to reality.