论文标题

用粗糙内核的calderón换向器的定量加权边界

Quantitative weighted bounds for Calderón commutator with rough kernel

论文作者

Chen, Yanping, Li, Ji

论文摘要

我们考虑加权$ l^p(w)$有界($ 1 <p <\ infty $和$ w $ a muckenhoupt $ a_p $重量)的calderón交换器$ \ MATHCALc_Ω$与粗糙的均质内核相关,在l^q(\ qustbb s^$ q $ qu $ quy)下$ q_0 $ a固定常数取决于$ W $。与先前相关的已知结果(假设$ω\在l^\ infty(\ mathbb s^{n-1})$中,我们的结果是$ω\在l^q(\ mathbb s^{n-1})中,$ q $在范围内$(q_0,\ infty)的$ q $是新的。我们还获得了$ l^p(w)$上的此$ \ MATHCALC_Ω$的定量加权绑定,这是该类别运营商的最著名定量结果。

We consider weighted $L^p(w)$ boundedness ($1<p<\infty $ and $w$ a Muckenhoupt $A_p$ weight) of the Calderón commutator $\mathcal C_Ω$ associated with rough homogeneous kernel, under the condition $Ω\in L^q(\mathbb S^{n-1})$ for $q_0<q\leq\infty$ with $q_0$ a fixed constant depending on $w$. Comparing to the previous related known results (assuming $Ω\in L^\infty(\mathbb S^{n-1})$), our result for $Ω\in L^q(\mathbb S^{n-1})$ with $q$ in the range $(q_0,\infty)$ is new. We also obtain a quantitative weighted bound for this $\mathcal C_Ω$ on $L^p(w)$, which is the best known quantitative result for this class of operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源