论文标题
定量融资的SIG-SDES模型
Sig-SDEs model for quantitative finance
论文作者
论文摘要
校准数据的数学模型已经无处不在,可以在现代定量融资中进行关键的决策过程。在这项工作中,我们通过将经典的定量设置与生成建模方法集成在一起,为数据驱动的模型选择提出了一个新颖的框架。利用签名的属性,这是一种从随机分析中出现的众所周知的路径转换,最近成为用于学习时间序列数据的领先的机器学习技术,我们开发了SIG-SDE模型。 SIG-SDE提供了关于神经SDE的新观点,可以通过非线性方式校准,以非线性方式依赖于资产价格的整个轨迹。此外,我们的方法使在定价措施$ \ Mathbb Q $和现实世界中的$ \ Mathbb P $下始终如一地校准。最后,我们展示了SIG-SDE模拟计算风险概况或对冲策略所需的未来市场情况的能力。重要的是,这种新模型的基础是严格的数学分析,在适当的条件下为提出算法的收敛提供了理论保证。
Mathematical models, calibrated to data, have become ubiquitous to make key decision processes in modern quantitative finance. In this work, we propose a novel framework for data-driven model selection by integrating a classical quantitative setup with a generative modelling approach. Leveraging the properties of the signature, a well-known path-transform from stochastic analysis that recently emerged as leading machine learning technology for learning time-series data, we develop the Sig-SDE model. Sig-SDE provides a new perspective on neural SDEs and can be calibrated to exotic financial products that depend, in a non-linear way, on the whole trajectory of asset prices. Furthermore, we our approach enables to consistently calibrate under the pricing measure $\mathbb Q$ and real-world measure $\mathbb P$. Finally, we demonstrate the ability of Sig-SDE to simulate future possible market scenarios needed for computing risk profiles or hedging strategies. Importantly, this new model is underpinned by rigorous mathematical analysis, that under appropriate conditions provides theoretical guarantees for convergence of the presented algorithms.