论文标题

$ f'(u^\ ast)$的起源附近的行为在径向奇异的极端解决方案中

Behavior near the origin of $f'(u^\ast)$ in radial singular extremal solutions

论文作者

Villegas, Salvador

论文摘要

考虑单位球中的半连续性椭圆方程$-ΔU=λf(u)$ $ b_1 \ subset \ subset \ mathbb {r}^n $,带有dirichlet data $ u | _ {\ partial b_1} = 0 $ $ [0,\ infty)$,以至于$ f(s)/s \ rightarrow \ infty $ as $ s \ rightarrow \ infty $。在本文中,我们研究了$ f'(u^\ ast)$附近的行为时,当$ u^\ ast $,这是与$λ=λ^\ ast $相关的先前问题的极端解决方案,这是单数。这回答了布雷兹斯和瓦兹克斯带来的开放问题。

Consider the semilinear elliptic equation $-Δu=λf(u)$ in the unit ball $B_1\subset \mathbb{R}^N$, with Dirichlet data $u|_{\partial B_1}=0$, where $λ\geq 0$ is a real parameter and $f$ is a $C^1$ positive, nondecreasing and convex function in $[0,\infty)$ such that $f(s)/s\rightarrow\infty$ as $s\rightarrow\infty$. In this paper we study the behavior of $f'(u^\ast)$ near the origin when $u^\ast$, the extremal solution of the previous problem associated to $λ=λ^\ast$, is singular. This answers to an open problems posed by Brezis and Vázquez.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源