论文标题

制造数据和机器学习平台:通过物联网实现科学实验的实时监控和控制

The Manufacturing Data and Machine Learning Platform: Enabling Real-time Monitoring and Control of Scientific Experiments via IoT

论文作者

Elias, Jakob R., Chard, Ryan, Libera, Joseph A., Foster, Ian, Chaudhuri, Santanu

论文摘要

物联网设备和传感器网络为测量,监测和指导科学实验提供了新的机会。传感器,相机和仪器可以合并,以对正在进行的实验的状态提供以前无法实现的见解。但是,物联网设备在它们生成的数据的类型,数量和速度上可能差异很大,从而使充分意识到这一潜力变得具有挑战性。实际上,在近乎实际的时间内协同不同的物联网数据流可以使用机器学习(ML)。此外,需要新的工具和技术来促进传感器数据的收集,聚合和操纵,以简化ML模型的应用,然后完全意识到IoT设备在实验室中的实用性。在这里,我们将展示Argonne开发的制造数据和机器学习(MDML)平台如何在制造实验中分析和使用IoT设备。 MDML旨在通过提供基础架构将AI集成在网络物理系统中以进行原位分析来标准化高级数据分析的研究和操作环境。我们将证明MDML能够使用多个计算资源来处理各种物联网数据流以及集成ML模型来指导实验。

IoT devices and sensor networks present new opportunities for measuring, monitoring, and guiding scientific experiments. Sensors, cameras, and instruments can be combined to provide previously unachievable insights into the state of ongoing experiments. However, IoT devices can vary greatly in the type, volume, and velocity of data they generate, making it challenging to fully realize this potential. Indeed, synergizing diverse IoT data streams in near-real time can require the use of machine learning (ML). In addition, new tools and technologies are required to facilitate the collection, aggregation, and manipulation of sensor data in order to simplify the application of ML models and in turn, fully realize the utility of IoT devices in laboratories. Here we will demonstrate how the use of the Argonne-developed Manufacturing Data and Machine Learning (MDML) platform can analyze and use IoT devices in a manufacturing experiment. MDML is designed to standardize the research and operational environment for advanced data analytics and AI-enabled automated process optimization by providing the infrastructure to integrate AI in cyber-physical systems for in situ analysis. We will show that MDML is capable of processing diverse IoT data streams, using multiple computing resources, and integrating ML models to guide an experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源