论文标题
使用二维群集状态对连续变化量子门的结构和噪声分析
Architecture and noise analysis of continuous-variable quantum gates using two-dimensional cluster states
论文作者
论文摘要
由于其独特的可伸缩性潜力,连续可变量子光学器件是大规模量子计算的有前途的平台。特别是,具有适用于通用量子计算的二维拓扑结构的非常大的群集状态可以以确定性的方式很容易生成,并且已知通过波音量子误差纠正的通往断层耐受性的途径。在本文中,我们提出了一个基于测量的量子计算体系结构,以在最近生成的二维聚类状态下实现一组通用门[1,2]。我们通过估算和最小化相关的随机噪声添加以及最小化的栅极误差可能性,分析了在这些群集状态以及其他二维群集状态(BiLayer-square lattice和Quad-rail晶格群集态[3,4])中执行的各种量子门的性能。我们比较了这四个不同的状态,并发现尽管它们都允许进行通用计算,但四边形晶格群集状态的性能要比所有表现出相似性能的其他三个状态更好。
Due to its unique scalability potential, continuous variable quantum optics is a promising platform for large scale quantum computing. In particular, very large cluster states with a two-dimensional topology that are suitable for universal quantum computing and quantum simulation can be readily generated in a deterministic manner, and routes towards fault-tolerance via bosonic quantum error-correction are known. In this article we propose a complete measurement-based quantum computing architecture for the implementation of a universal set of gates on the recently generated two-dimensional cluster states [1,2]. We analyze the performance of the various quantum gates that are executed in these cluster states as well as in other two-dimensional cluster states (the bilayer-square lattice and quad-rail lattice cluster states [3,4]) by estimating and minimizing the associated stochastic noise addition as well as the resulting gate error probability. We compare the four different states and find that, although they all allow for universal computation, the quad-rail lattice cluster state performs better than the other three states which all exhibit similar performance.