论文标题

贝尔非局部单镜头

Bell nonlocality with a single shot

论文作者

Araújo, Mateus, Hirsch, Flavien, Quintino, Marco Túlio

论文摘要

为了拒绝局部隐藏变量假设,可以通过对物理实验给出的p值的小p值来量化铃铛不平等的有用性。在这里,我们表明,要获得一个小的预期p值,当钟声不平等的本地和tsirelson边界之间存在很大的差距,当它被作为非本地游戏配制时。我们开发了一种将任意铃铛不等式转换为具有最大差距的同等非局部游戏的算法,并显示了CGLMP和$ i_ {nn22} $不平等的结果。我们介绍了与差距任意接近一个的铃铛不平等的明确示例,并表明这使得可以在单枪中拒绝任意小p值的本地隐藏变量,而无需收集统计信息。我们还开发了一种用于计算一般贝尔不平等现象的局部界限的算法,该算法明显比幼稚的方法快得多,这可能具有独立的关注。

In order to reject the local hidden variables hypothesis, the usefulness of a Bell inequality can be quantified by how small a p-value it will give for a physical experiment. Here we show that to obtain a small expected p-value it is sufficient to have a large gap between the local and Tsirelson bounds of the Bell inequality, when it is formulated as a nonlocal game. We develop an algorithm for transforming an arbitrary Bell inequality into an equivalent nonlocal game with the largest possible gap, and show its results for the CGLMP and $I_{nn22}$ inequalities. We present explicit examples of Bell inequalities with gap arbitrarily close to one, and show that this makes it possible to reject local hidden variables with arbitrarily small p-value in a single shot, without needing to collect statistics. We also develop an algorithm for calculating local bounds of general Bell inequalities which is significantly faster than the naïve approach, which may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源