论文标题

截断累积膨胀的一般相对论非理想流体方程

General relativistic non-ideal fluid equations for dark matter from a truncated cumulant expansion

论文作者

Erschfeld, Alaric, Floerchinger, Stefan, Rupprecht, Maximilian

论文摘要

开发了基于基于暗物质颗粒的单粒子相空间分布函数的累积扩展的新截断方案。在相对论动力学理论中扩展了矩的方法,我们得出了进化方程,这些方程是补充能量弹药张量和粒子数电流的协变量保护。截断累积的扩展,我们获得了一个封闭的,协变量和双曲线的方程系统,该系统可用于对一般相对论非理想流体的演变进行建模。作为一个工作示例,我们考虑了一个动态压力的Friedmann-Lema-Robertson-Walker宇宙学,并求解状态参数的有效方程的时间演变。

A new truncation scheme based on the cumulant expansion of the one-particle phase-space distribution function for dark matter particles is developed. Extending the method of moments in relativistic kinetic theory, we derive evolution equations which supplement the covariant conservation of the energy-momentum tensor and particle number current. Truncating the cumulant expansion we obtain a closed, covariant and hyperbolic system of equations which can be used to model the evolution of a general relativistic non-ideal fluid. As a working example we consider a Friedmann-Lemaître-Robertson-Walker cosmology with dynamic pressure and solve for the time evolution of the effective equation of state parameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源