论文标题

量子后多方计算

Post-Quantum Multi-Party Computation

论文作者

Agarwal, Amit, Bartusek, James, Goyal, Vipul, Khurana, Dakshita, Malavolta, Giulio

论文摘要

我们启动了针对恶意多项式量子对手的安全性(在平原模型中)的多方计算的研究。我们观察到现有技术很容易提供多项式运行协议,但我们的主要结果是构造 *恒定的 *量子后多方计算。我们假设有误差(LWE)学习的轻度超级多项式量子硬度和基于LWE的圆形安全性假设的多项式量子硬度。在此过程中,我们开发了以下可能具有独立关注的加密原语: 1。从基于LWE的圆形安全假设的量子硬度来计算的关系的怪异加密方案。这产生了使用经典键的第一个量子多键全效加密方案。 2。恒定的零知识固定固定率针对可通过量子电路计算的可计算的关系的多个平行量子验证器。为了实现这一目标,我们针对不会克隆对手状态的 * Parallel *验证者开发了一种新的直线非黑色框仿真技术。这构成了我们技术贡献的核心,也可能与经典环境有关。 3。从LWE的轻度超级量子量子硬度来看,一种恒定的量子后不易承诺的承诺方案。

We initiate the study of multi-party computation for classical functionalities (in the plain model) with security against malicious polynomial-time quantum adversaries. We observe that existing techniques readily give a polynomial-round protocol, but our main result is a construction of *constant-round* post-quantum multi-party computation. We assume mildly super-polynomial quantum hardness of learning with errors (LWE), and polynomial quantum hardness of an LWE-based circular security assumption. Along the way, we develop the following cryptographic primitives that may be of independent interest: 1. A spooky encryption scheme for relations computable by quantum circuits, from the quantum hardness of an LWE-based circular security assumption. This yields the first quantum multi-key fully-homomorphic encryption scheme with classical keys. 2. Constant-round zero-knowledge secure against multiple parallel quantum verifiers from spooky encryption for relations computable by quantum circuits. To enable this, we develop a new straight-line non-black-box simulation technique against *parallel* verifiers that does not clone the adversary's state. This forms the heart of our technical contribution and may also be relevant to the classical setting. 3. A constant-round post-quantum non-malleable commitment scheme, from the mildly super-polynomial quantum hardness of LWE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源