论文标题
量子信息动力学中的破坏性缩放缩放过渡
Decoherence scaling transition in the dynamics of quantum information scrambling
论文作者
论文摘要
用于开发量子技术的量子信息的可靠处理需要精确地控制多个生物系统的平衡外。这是一项高度挑战的任务,因为量子状态对外部扰动的脆弱性随系统大小而增加。在这里,我们报告了一系列实验量子模拟,这些量子模拟量化了受控的哈密顿进化对扰动的敏感性,这些进化使该系统远离靶向进化。基于超时有序的相关性,我们证明了过程保真度的衰减率随着相关量子的有效数量$ k $作为$ k^α$而增加。作为扰动强度的函数,我们观察到指数$α$在两个不同的动力学方面之间的缩放尺度过渡。在关键扰动强度下方的限制情况下,指数$α$急剧低于1,并且对可以控制的量子数的数量没有固有的限制。量子信息受控动力学的这种弹性量子特征有望可靠地控制大量子系统。
Reliable processing of quantum information for developing quantum technologies requires precise control of out-of-equilibrium many-bodysystems. This is a highly challenging task as the fragility of quantum states to external perturbations increases with the system-size. Here, we report on a series of experimental quantum simulations that quantify the sensitivity of a controlled Hamiltonian evolution to perturbations that drive the system away from the targeted evolution. Based on out-of-time ordered correlations, we demonstrate that the decay-rate of the process fidelity increases with the effective number $K$ of correlated qubits as $K^α$. As a function of the perturbation strength, we observe a decoherence scaling transition of the exponent $α$ between two distinct dynamical regimes. In the limiting case below the critical perturbation strength, the exponent $α$ drops sharply below 1, and there is no inherent limit to the number of qubits that can be controlled. This resilient quantum feature of the controlled dynamics of quantum information is promising for reliable control of large quantum systems.