论文标题

功能强大的最佳传输用于高维数据

Feature Robust Optimal Transport for High-dimensional Data

论文作者

Petrovich, Mathis, Liang, Chao, Sato, Ryoma, Liu, Yanbin, Tsai, Yao-Hung Hubert, Zhu, Linchao, Yang, Yi, Salakhutdinov, Ruslan, Yamada, Makoto

论文摘要

最佳运输是一个机器学习问题,其应用程序包括分发比较,功能选择和生成对抗网络。在本文中,我们提出了用于高维数据的特征最佳运输(Frot),该数据使用特征选择解决了高维OT问题,以避免维度的诅咒。具体而言,我们找到具有判别特征的运输计划。为此,我们将Frot问题提出为最小的优化问题。然后,我们提出了Frot问题的凸公式,并使用Frank - 基于Wolfe的优化算法来解决它,从而可以使用Sinkhorn算法有效地解决子问题。由于Frot从选定的功能找到了运输计划,因此它对噪声特征是可靠的。为了显示FROT的有效性,我们建议在深层神经网络中使用FROT算法解决层选择问题,以进行语义对应。通过进行合成和基准实验,我们证明了所提出的方法可以通过确定重要层来找到强大的对应关系。我们表明,Frot算法在现实世界的语义通信数据集中实现了最新的性能。

Optimal transport is a machine learning problem with applications including distribution comparison, feature selection, and generative adversarial networks. In this paper, we propose feature-robust optimal transport (FROT) for high-dimensional data, which solves high-dimensional OT problems using feature selection to avoid the curse of dimensionality. Specifically, we find a transport plan with discriminative features. To this end, we formulate the FROT problem as a min--max optimization problem. We then propose a convex formulation of the FROT problem and solve it using a Frank--Wolfe-based optimization algorithm, whereby the subproblem can be efficiently solved using the Sinkhorn algorithm. Since FROT finds the transport plan from selected features, it is robust to noise features. To show the effectiveness of FROT, we propose using the FROT algorithm for the layer selection problem in deep neural networks for semantic correspondence. By conducting synthetic and benchmark experiments, we demonstrate that the proposed method can find a strong correspondence by determining important layers. We show that the FROT algorithm achieves state-of-the-art performance in real-world semantic correspondence datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源