论文标题

具有非变化空间曲率的最佳玻尔兹曼层次结构

Optimal Boltzmann hierarchies with non-vanishing spatial curvature

论文作者

Pitrou, Cyril, Pereira, Thiago S., Lesgourgues, Julien

论文摘要

在宇宙学的扰动理论中,宇宙微波背景各向异性通常是从与扰动的爱因斯坦方程相连的玻尔兹曼层次结构计算得出的。在此设置中,一组多物描述了温度各向异性,而另外两组电力和磁性类型描述了极化各向异性。为了减少极化所需的多物类型的数量,从而加快了数值分辨率,在爱因斯坦 - 博尔兹曼代码的文献中提出了最佳的层次结构。但是,最近已经显示,在空间曲率的存在下,最佳层次结构中使用的方向性和轨道特征函数之间的分离性是不正确的。我们研究了可分离性的假设如何影响最佳层次结构,并表明它引入了相对于完整层次结构的顺序$ω_k$的相对误差。尽管如此,我们表明,最佳层次结构仍然为温度和极化角光谱带来非常好的结果,即使对于曲率,相对误差也远小于宇宙差异,即尽管如此,我们发现使用最佳层次结构时,来自张量扰动的极化角光谱会发生显着改变,从而导致误差通常为$ 50 |ω_k|该组件上的\%$。

Within cosmological perturbation theory, the cosmic microwave background anisotropies are usually computed from a Boltzmann hierarchy coupled to the perturbed Einstein equations. In this setup, one set of multipoles describes the temperature anisotropies, while two other sets, of electric and magnetic types, describe the polarization anisotropies. In order to reduce the number of multipoles types needed for polarization, and thus to speed up the numerical resolution, an optimal hierarchy has been proposed in the literature for Einstein-Boltzmann codes. However, it has been recently shown that the separability between directional and orbital eigenfunctions employed in the optimal hierarchy is not correct in the presence of spatial curvature. We investigate how the assumption of separability affects the optimal hierarchy, and show that it introduces relative errors of order $Ω_K$ with respect to the full hierarchy. Despite of that, we show that the optimal hierarchy still gives extremely good results for temperature and polarization angular spectra, with relative errors that are much smaller than cosmic variance even for curvatures as large as $|Ω_K|=0.1$. Still, we find that the polarization angular spectra from tensor perturbations are significantly altered when using the optimal hierarchy, leading to errors that are typically of order $50 |Ω_K| \%$ on that component.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源