论文标题

原星盘的压力最大值巨型行星形成II。混合积聚方案

Giant planet formation at the pressure maxima of protoplanetary disks II. A hybrid accretion scenario

论文作者

Guilera, O. M., Sándor, Zs., Ronco, M. P., Venturini, J., Bertolami, M. M. Miller

论文摘要

最新观察到了原球盘的观察结果,显示了与压力最大值有关的环状结构。最大压力是尘埃收集器和行星迁移陷阱。大多数行星形成作品都基于卵石积分模型或行星增生模型。但是,最近的研究提出了木星的可能形成,这可能是卵石和行星的混合积聚。我们旨在研究由尘埃演化,行星形成和行星生长组成的整个行星形成过程,在原星盘中最大的压力生长。我们通过数值模拟来计算气体和尘埃演化,包括尘埃生长,碎裂,径向漂移和颗粒在压降下的积累。我们还通过流式不稳定性和形成月球大小的胚胎来考虑地球的形成,该胚胎通过鹅卵石和行星的混合吸收而生长成巨型行星。我们发现,原月球磁盘中的压力最大值是灰尘向内漂流的有效收集器。由于在压降处积累了大量的尘埃,因此通过流不稳定性来形成行星的形成状况。然后,通过鹅卵石的积聚,很快形成了一个巨大的核心(在$ \ sim 10^4 $ yr中)。达到卵石隔离质量后,核心的生长由于行星的积聚而缓慢地继续。行星积聚发行的能量延迟了失控的气体积聚的开始,使汽油巨头在$ \ sim $ \ sim $ 1 Myr的磁盘演化后形成。压力最大也充当迁移陷阱。原月球磁盘中的压力最大值是通过流媒体不稳定性和行星迁移陷阱的尘埃陷阱,地球形成的优先位置。所有这些条件都允许通过卵石和行星的混合积聚快速形成巨型行星。

Recent observations of protoplanetary disks have revealed ring-like structures that can be associated to pressure maxima. Pressure maxima are known to be dust collectors and planet migration traps. Most of planet formation works are based either on the pebble accretion model or on the planetesimal accretion model. However, recent studies proposed the possible formation of Jupiter by the hybrid accretion of pebbles and planetesimals. We aim to study the full process of planet formation consisting of dust evolution, planetesimal formation and planet growth at a pressure maximum in a protoplanetary disk. We compute, through numerical simulations, the gas and dust evolution, including dust growth, fragmentation, radial drift and particle accumulation at a pressure bump. We also consider the formation of planetesimals by streaming instability and the formation of a moon-size embryo that grows into a giant planet by the hybrid accretion of pebbles and planetesimals. We find that pressure maxima in protoplanetary disks are efficient collectors of dust drifting inwards. The condition of planetesimal formation by streaming instability is fulfilled due to the large amount of dust accumulated at the pressure bump. Then, a massive core is quickly formed (in $\sim 10^4$ yr) by the accretion of pebbles. After the pebble isolation mass is reached, the growth of the core slowly continues by the accretion of planetesimals. The energy released by planetesimal accretion delays the onset of runaway gas accretion, allowing a gas giant to form after $\sim$1 Myr of disk evolution. The pressure maximum also acts as a migration trap. Pressure maxima in protoplanetary disks are preferential locations for dust traps, planetesimal formation by streaming instability and planet migration traps. All these conditions allow the fast formation of a giant planet by the hybrid accretion of pebbles and planetesimals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源