论文标题
MAPLET:在通信和计算约束下建立合作大满贯地图的有效方法
Maplets: An Efficient Approach for Cooperative SLAM Map Building Under Communication and Computation Constraints
论文作者
论文摘要
本文介绍了一种通过新颖的集成框架来促进大规模,近地,地下或室内空间的合作探索和映射的方法,用于本地密集的代理图数据。这项工作针对有限的尺寸,重量和功率(交换)代理,重点是限制所需的通信和冗余处理。该方法使用独特的批处理优化引擎组织来实现高效的两层优化结构。层I由创建和可能共享本地地图(本地地图,大小限制)的代理组成,这些MAP是使用同时定位和映射(SLAM)映射构建软件生成的,然后将其边缘化为更紧凑的参数化。 MAPLET以重叠的方式生成,用于估计那些重叠的Maplet之间的转换和不确定性,从而在Maplet的本地框架之间提供准确而紧凑的探测仪或Delta-Pose表示。增量姿势可以在代理之间共享,如果MAPLET具有显着特征(用于循环封闭),则MAPLET的紧凑表示形式也可以共享。 第二个优化层由一个全局优化器组成,该优化器旨在优化那些MAPLET到MAPLET变换,包括所确定的任何环路封闭。这可以提供经过遍历空间的准确全局“骨架”,而无需在高密度点云上工作。此地图数据的紧凑版本允许可扩展的合作探索,具有有限的通信要求,只有在需要的情况下,大多数单独的Maplet或低忠诚度渲染都可以共享。
This article introduces an approach to facilitate cooperative exploration and mapping of large-scale, near-ground, underground, or indoor spaces via a novel integration framework for locally-dense agent map data. The effort targets limited Size, Weight, and Power (SWaP) agents with an emphasis on limiting required communications and redundant processing. The approach uses a unique organization of batch optimization engines to enable a highly efficient two-tier optimization structure. Tier I consist of agents that create and potentially share local maplets (local maps, limited in size) which are generated using Simultaneous Localization and Mapping (SLAM) map-building software and then marginalized to a more compact parameterization. Maplets are generated in an overlapping manner and used to estimate the transform and uncertainty between those overlapping maplets, providing accurate and compact odometry or delta-pose representation between maplet's local frames. The delta poses can be shared between agents, and in cases where maplets have salient features (for loop closures), the compact representation of the maplet can also be shared. The second optimization tier consists of a global optimizer that seeks to optimize those maplet-to-maplet transformations, including any loop closures identified. This can provide an accurate global "skeleton"' of the traversed space without operating on the high-density point cloud. This compact version of the map data allows for scalable, cooperative exploration with limited communication requirements where most of the individual maplets, or low fidelity renderings, are only shared if desired.