论文标题

SDBD等离子体执行器的建模和理论分析,由快速降低脉冲脉冲DC电压驱动

Modeling and theoretical analysis of SDBD plasma actuators driven by Fast-Rise-Slow-Decay Pulsed-DC voltages

论文作者

Chen, Xiancong, Zhu, Yifei, Wu, Yun, Su, Zhi, Liang, Hua

论文摘要

分析了由脉冲-DC电压驱动的表面介电屏障放电(SDBD)执行器。在这项工作中研究的脉冲-DC SDBD等同于经典的SDBD,该SDBD由量身定制的快速降低 - 缓慢 - decay(FRSD)电压波形驱动。使用经典的2D流体模型研究了在不同斜率上研究电压上升阶段中的血浆通道形成和电荷生产过程,根据分析方法将2D模型结果作为输入,研究了电压衰减阶段中产生的推力。在电压波形的后缘产生推力脉冲,当电压降低大约降低阴极电压下降〜($ \ $ \ $ 600〜V)时,达到最大值。上升和后端的持续时间,衰减速率和施加电压的幅度是影响执行器性能的主要因素。分析表达式是针对峰值推力的值和时间矩制定的,也估计了推力的上限。较高的电压上升速率导致电压上升阶段的电荷密度较高,从而更高的推力。通常,较短的电压后端会导致峰值推力的更高值和更早的出现。后端的详细轮廓也会影响性能。在这项工作中的结果使我们能够根据不同应用条件下的主动流量控制的要求灵活地为SDBD执行器设计FRSD波形。

Surface dielectric barrier discharge (SDBD) actuators driven by the Pulsed-DC voltages are analyzed. The Pulsed-DC SDBD studied in this work is equivalent to a classical SDBD driven by a tailored Fast-Rise-Slow-Decay (FRSD) voltage waveform. The plasma channel formation and charge production process in the voltage rising stage are studied at different slopes using a classical 2D fluid model, the thrust generated in the voltage decaying stage is studied based on an analytical approach taking 2D model results as the input. A thrust pulse is generated in the trailing edge of the voltage waveform and reaches maximum when the voltage decreases by approximately the value of cathode voltage fall~($\approx$600~V). The time duration of the rising and trailing edge, the decay rate and the amplitude of applied voltage are the main factors affecting the performance of the actuator. Analytical expressions are formulated for the value and time moment of peak thrust, the upper limit of thrust is also estimated. Higher voltage rising rate leads to higher charge density in the voltage rising stage thus higher thrust. Shorter voltage trailing edge, in general, results in higher value and earlier appearance of the peak thrust. The detailed profile of the trailing edge also affects the performance. Results in this work allow us to flexibly design the FRSD waveforms for an SDBD actuator according to the requirements of active flow control in different application conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源