论文标题

基于GCN的用户表示学习,用于统一强大的建议和欺诈者检测

GCN-Based User Representation Learning for Unifying Robust Recommendation and Fraudster Detection

论文作者

Zhang, Shijie, Yin, Hongzhi, Chen, Tong, Hung, Quoc Viet Nguyen, Huang, Zi, Cui, Lizhen

论文摘要

近年来,推荐系统已成为所有电子商务平台中必不可少的功能。推荐系统的审核评级数据通常来自开放平台,这可能会吸引一群恶意用户故意插入假反馈,以试图使推荐系统偏向于他们的利益。这种攻击的存在可能违反了建模假设,即高质量数据始终可用,这些数据确实反映了用户的兴趣和偏好。因此,构建一个强大的推荐系统具有很大的实际意义,即使在存在先行攻击的情况下,也能够产生稳定的建议。在本文中,我们提出了GraphRFI-基于GCN的用户表示学习框架,以统一的方式执行强大的建议和欺诈者检测。在其端到端的学习过程中,在欺诈者检测组件中被识别为欺诈者的用户的可能性会自动确定该用户评级数据在建议组件中的贡献;而建议组件中输出的预测错误是欺诈检测组件中的重要功能。因此,这两个组件可以相互增强。已经进行了广泛的实验,实验结果表明了我们在这两个任务中的GraphRFI的优越性 - 可靠的评级预测和欺诈者检测。此外,所提出的GraphRFI经过验证,可以对最先进的推荐系统的各种先令攻击更加强大。

In recent years, recommender system has become an indispensable function in all e-commerce platforms. The review rating data for a recommender system typically comes from open platforms, which may attract a group of malicious users to deliberately insert fake feedback in an attempt to bias the recommender system to their favour. The presence of such attacks may violate modeling assumptions that high-quality data is always available and these data truly reflect users' interests and preferences. Therefore, it is of great practical significance to construct a robust recommender system that is able to generate stable recommendations even in the presence of shilling attacks. In this paper, we propose GraphRfi - a GCN-based user representation learning framework to perform robust recommendation and fraudster detection in a unified way. In its end-to-end learning process, the probability of a user being identified as a fraudster in the fraudster detection component automatically determines the contribution of this user's rating data in the recommendation component; while the prediction error outputted in the recommendation component acts as an important feature in the fraudster detection component. Thus, these two components can mutually enhance each other. Extensive experiments have been conducted and the experimental results show the superiority of our GraphRfi in the two tasks - robust rating prediction and fraudster detection. Furthermore, the proposed GraphRfi is validated to be more robust to the various types of shilling attacks over the state-of-the-art recommender systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源