论文标题
基于传感器机器人控制的差分映射峰值神经网络
Differential Mapping Spiking Neural Network for Sensor-Based Robot Control
论文作者
论文摘要
在这项工作中,提出了一个尖峰神经网络(SNN),用于近似机器人系统的差分示象图。计算的模型用作局部类似雅各布的投影,将传感器空间的变化与运动空间的变化联系起来。 SNN由输入(感觉)层和连接的塑料突触连接的输出(电动机)层组成,并在输出层处具有抑制性连接。尖峰神经元以基于峰值依赖性可塑性为基础的突触学习规则为Izhikevich神经元建模。来自本体感受和外部感受传感器的反馈数据通过电动机babling过程编码并馈入输入层。由于建立有效的SNN的主要挑战是调整其参数,因此我们提出了一种直观的调整方法,该方法大大减少了神经元的数量和训练所需的数据量。我们提出的架构代表了一个具有生物学上合理的神经控制器,该神经控制器能够处理嘈杂的传感器读数以实时指导机器人运动。提出了实验结果,以通过视觉引导的机器人验证控制方法。
In this work, a spiking neural network (SNN) is proposed for approximating differential sensorimotor maps of robotic systems. The computed model is used as a local Jacobian-like projection that relates changes in sensor space to changes in motor space. The SNN consists of an input (sensory) layer and an output (motor) layer connected through plastic synapses, with inter-inhibitory connections at the output layer. Spiking neurons are modeled as Izhikevich neurons with a synaptic learning rule based on spike-timing-dependent plasticity. Feedback data from proprioceptive and exteroceptive sensors are encoded and fed into the input layer through a motor babbling process. As the main challenge to building an efficient SNN is to tune its parameters, we present an intuitive tuning method that considerably reduces the number of neurons and the amount of data required for training. Our proposed architecture represents a biologically plausible neural controller that is capable of handling noisy sensor readings to guide robot movements in real-time. Experimental results are presented to validate the control methodology with a vision-guided robot.