论文标题

单元矩阵元素的动作$ \ m athfrak {gl}(m | n)$ - 不变的bethe vectors

Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors

论文作者

Hutsalyuk, A., Liashyk, A., Pakuliak, S. Z., Ragoucy, E., Slavnov, N. A.

论文摘要

计算了$ \ mathfrak {gl}(m | n)$ - 不变的量子集成模型中的单构矩阵元素对脱壳bethe向量的多个动作。这些动作用于描述标量产品总和公式中最高系数的递归。为简单起见,为$ \ mathfrak {gl}(m)$ case提供了详细的证明。超对称情况的结果可以类似地获得,并在没有证据的情况下配制。

Multiple actions of the monodromy matrix elements onto off-shell Bethe vectors in the $\mathfrak{gl}(m|n)$-invariant quantum integrable models are calculated. These actions are used to describe recursions for the highest coefficients in the sum formula for the scalar product. For simplicity, detailed proofs are given for the $\mathfrak{gl}(m)$ case. The results for the supersymmetric case can be obtained similarly and are formulated without proofs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源