论文标题
对称性受保护的拓扑阶段超出组:Q形成的Affleck-Kennedy-Lieb-Tasaki模型
Symmetry protected topological phases beyond groups: The q-deformed Affleck-Kennedy-Lieb-Tasaki model
论文作者
论文摘要
我们认为,应将$ q $ - 成型的自旋1 AKLT Hamiltonian视为对称性受保护拓扑阶段的代表。即使它未能显示出已知可以保护haldane阶段的任何标准对称性,但它仍然显示出此阶段的所有特征:分数化旋转 - $ \ frac {1} {2} $界面旋转,非平凡的弦乐顺序, - 使用适当的定义 - 在Entangelement spectrum中使用适当的定义 - 两倍。我们将这些属性追溯到$ so_q(3)$量子组对称性的存在,并推测了与离散对称对称性的潜在链接。我们期望我们的发现和方法与具有非标准对称性的其他对称性保护拓扑阶段的识别,表征和分类有关。
We argue that the $q$-deformed spin-1 AKLT Hamiltonian should be regarded as a representative of a symmetry protected topological phase. Even though it fails to exhibit any of the standard symmetries known to protect the Haldane phase it still displays all characteristics of this phase: Fractionalized spin-$\frac{1}{2}$ boundary spins, non-trivial string order and - when using an appropriate definition - a two-fold degeneracy in the entanglement spectrum. We trace these properties back to the existence of an $SO_q(3)$ quantum group symmetry and speculate about potential links to discrete duality symmetries. We expect our findings and methods to be relevant for the identification, characterization and classification of other symmetry-protected topological phases with non-standard symmetries.