论文标题

稳定的亚当斯在Hermitian K理论上的操作

The stable Adams operations on Hermitian K-theory

论文作者

Fasel, Jean, Haution, Olivier

论文摘要

我们证明(偏斜)对称捆绑包的外部功能会在环$ gw^0(x)\ oplus gw^2(x)$上诱导$λ$ - 环的结构,当$ x $是$ 2 $可逆的方案时。使用这种结构,我们在Hermitian $ K $ -Theory上定义了稳定的Adams操作。作为我们方法的副产品,我们还计算了与Hermitian $ k $ - 理论相关的三元法律。

We prove that exterior powers of (skew-)symmetric bundles induce a $λ$-ring structure on the ring $GW^0(X) \oplus GW^2(X)$, when $X$ is a scheme where $2$ is invertible. Using this structure, we define stable Adams operations on Hermitian $K$-theory. As a byproduct of our methods, we also compute the ternary laws associated to Hermitian $K$-theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源