论文标题

经典的非平衡统计力学和量子古典类比的“开放系统动力学”观点

Classical non-equilibrium statistical mechanics and an "open system dynamics" perspective on quantum-classical analogy

论文作者

Yu, Li

论文摘要

众所周知,封闭的古典系统的统计数据根据liouville定理发展。在这里,我们通过使用Green的功能和串联扩展方法来开发一个时间本地运动方程来研究经典系统的边际统计学的动力学。我们还将这种运动方程式与其假定的量子对应物进行了比较,即量子主方程,我们希望从“开放系统动力学”的角度来看,我们可以阐明量子古典类比(QCA)。在这种情况下,我们注意到QCA的一个明显例外,因为本文得出的一阶经典方程包含一个似乎没有量子类似物的术语。我们还提出了解决这种张力的可能方法,这可能有助于重新建立QCA(以第一个扰动顺序)。在开放系统动态的背景下,我们没有对QCA得出明确的结论,而是希望为这一行调查提供一个起点。

It is well known that the statistics of closed classical systems evolves according to the Liouville theorem. Here we study the dynamics of the marginal statistics of classical systems coupled to external degrees of freedom, by developing a time-local equation of motion using Green's functions and a series expansion method. We also compare this equation of motion with its supposed quantum counterpart, namely the quantum master equation, which we hope could shed some light on quantum-classical analogy (QCA) from the perspective of "open system dynamics". We notice an apparent exception to QCA in this case, as the first-order classical equation of motion derived herein contains a term that does not appear to have a quantum analogue. We also propose possible ways of getting around this tension, which may help re-establish QCA (in first perturbative order). We do not draw a definitive conclusion about QCA in the context of open system dynamics but hope to provide a starting point for investigations along this line.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源